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Shape clustering is a difficult visual task due to large intra-class variations and small inter-class variations 

induced by shape articulation, rotation, occlusion, etc . To tackle this problem, we attempt to leverage the 

complementary nature among features of different statistics ( e.g. , skeleton-based descriptors and contour- 

based descriptors) for robust clustering. In this paper, a similarity fusion framework based on spectral 

analysis is proposed. The proposed method, which we call co-spectral, is a spectral clustering algorithm. 

It has two inborn merits for shape clustering: (1) it can automatically make use of the complementarity of 

various shape similarities based on a co-training framework; (2) it does not require shape representations 

to be vectors. Co-spectral is evaluated on several popular shape benchmarks. The experimental results 

demonstrate that co-spectral outperforms the state-of-the-art algorithms by a large margin. 

© 2016 Elsevier B.V. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S  

t  

w  

p  

a  

i  

s  

t  

c  

n  

i

 

i  

i  

f  

d  

p  

p  

b  

t

 

c  

t  

i  

w  

e  
1. Introduction 

Shape clustering [16] is a fundamental problem in pattern

recognition with applications to shape matching [7,18] , recogni-

tion [13] , retrieval [5,6] and classification [4] . Given a collection of

shapes S = { s 1 , s 2 , . . . , s N } where N denotes the number of shapes,

the aim of shape clustering is to divide all the shape instances into

K clusters C = { c 1 , c 2 , . . . , c K } according to a pre-defined similarity

measure. 

The key issues in shape clustering lie in two aspects. First,

shape data is usually not represented by vectorial features. Instead,

tree [8] , matrix [13,27] and string [17] are more widely-used in

shape analysis. Hence, some clustering algorithms that require vec-

torial representations as inputs, e.g. , K-means [28] , are not applica-

ble directly. Second, there are large intra-class variations and small

inter-class variations, like articulation, rotation, occlusion, etc . Nev-

ertheless, it is difficult to design generic and discriminative shape

features to handle all the common deformations. In most cases, a

certain descriptor only focuses on a specific geometric structure

of shapes. For example, Shape Context (SC) [13] , as a represen-

tative contour-based descriptor, works well with rigid shapes. In

contrast, Inner Distance Shape Context (IDSC) [27] , which replaces

the Euclidean distance used in SC with geodesic distance, is better

at dealing with articulated shapes. 

To address the above issues, we introduce spectral clustering

as an elegant mathematical tool for the shape clustering task.
� This paper has been recommended for acceptance by Gabriella Sanniti di Baja. 
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pectral clustering operates on a weighted affinity graph, where

he nodes in the graph represent the data points and the edge

eights measure the similarities between two adjacent data

oints. Therefore, it can deal with arbitrary types of input data,

s long as the pairwise similarities are avaliable. This property

s crucial for shape clustering, since many shape similarity mea-

ures have no vectorial representations. Moreover, by exploiting

he properties of Laplacian of the affinity graph, spectral clustering

an capture the main patterns across categories and diminish the

egative influences of noisy attributes. As a result, spectral cluster-

ng is more robust to shape outliers. 

Considering the limitation of using only one type of similar-

ty measure, it can be expected that an effective method which

ntegrates multiple complementary similarities can boost the per-

ormance of shape clustering remarkably. Nevertheless, it is very

ifficult to fuse multiple descriptors in shape clustering, since no

rior or extra information can be used to judge the discriminative

ower of different features in such an unsupervised task. To our

est knowledge now, no methods have properly addressed the fea-

ure fusion issue in the shape clustering task. 

In this paper, based on spectral clustering, a co-trained spectral

lustering algorithm is presented. The proposed method inherits

he nice properties of spectral clustering as introduced above. Sim-

larity fusion is automatically done based on the co-training frame-

ork [41] that exploits the complementary nature among differ-

nt shape descriptors. Moreover, a density-based seed is exerted to

o-trained spectral clustering in order to avoid local minima and

rovide stable performances consistently. At last, since co-training

s not guaranteed to converge as suggested in [23] , we propose a

imple yet effective consensus-based voting scheme to aggregate

http://dx.doi.org/10.1016/j.patrec.2016.07.014
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he clustering results of different iterations without impairing the

erformance too much. 

The rest of the paper is organized as follows. We give a brief

eview of shape clustering algorithms in Section 2 . Our proposed

ethod is introduced in Section 3 . The experimental evaluations

nd comparisons are conducted in Section 4 . Conclusions are

rawn in Section 5 . 

. Related work 

In recent years, many algorithms are proposed to address the

hape clustering task. They can be coarsely divided into two cate-

ories: contour-based methods and skeleton-based methods. 

In [24] , a new similarity measure between a single shape

nd a shape group is defined, and it serves as the basis for a

oft K-means like framework to enable robust clustering. Clus-

ering in [35] is achieved by building on a differential geomet-

ic representation of shapes and geodesic lengths as shape met-

ics. Yankov et al. [38] take isomap clustering using a rotation-

lly invariant metric, which can detect the intrinsic nonlinear em-

edding in which the shape examples reside. In [29] , the elastic

roperties of shape boundaries are investigated and clustering is

one using dynamic programming based on the elastic geodesic

istance. 

Demirci et al. [19] construct a medial axis graph for shape sil-

ouettes. For every two graphs, a many-to-many correspondence

etween graph nodes [20] is established. These correspondences

re used later to recover the abstracted medial axis graph. An in-

ormation theoretic framework is presented in [37] . It attempts to

earn a mixture of tree unions that best accounts for the observed

amples using a minimum encoding criterion. In [21] , a game the-

retic clustering approach is developed, which can simultaneously

earn categories from examples and the similarity measures related

o them. Shen et al. also propose a skeleton-based clustering al-

orithm in [33] on the common structure skeleton graph (CSSG),

hich can discover intrinsic structural information of shapes be-

onging to the same cluster. 

Most aforementioned shape clustering methods are either

ontour-based or skeleton-based. There are also some methods

hat are not descriptor-based, such as Laplacian spectrum [30] or

inimum spanning trees [40] . The method proposed in this paper

s descriptor-based. It combines complementary shape features in

 unified framework, thus providing much better performances. 

. Proposed method 

.1. Similarity measure 

Contour-based descriptors and skeleton-based descriptors are

wo main streams in shape analysis. Contour-based descriptors de-

iver the distribution of shape boundary points. They are more sta-

le to affine transformations. By contrast, skeleton-based descrip-

ors convey the structure of object skeletons, thus are more ade-

uate in non-ridge analysis. The complementary nature between

hem has been extensively testified in shape recognition [9,32] . 

Two similarity measures are implemented in this pa-

er, i.e. , Shape Context (SC) [13] and Skeleton Path [8] , with

he former one as a representative contour descriptor and the

atter one as a skeleton descriptor. 

hape contetxt. Given a certain shape s q ∈ S, we extract its outer

ontour represented by n discrete points ν = { v 1 , v 2 , . . . , v n } in the

lane. Around each point v i ∈ ν, we construct a log-polar coordi-

ate space with 12 bins for dividing angle space and 5 bins for

ividing radius space. As a consequence, the k -th element in the
hape context histogram of v i is computed via 

p i (k ) = |{ v | v ∈ bin (k ) , v � = v i , v ∈ ν}| , (1)

here |.| measures the cardinality of the input set. 

Let q = { q 1 , q 2 , . . . , q n } and p = { p 1 , p 2 , . . . , p n } denote two sets

f shape context histograms of s q and s p respectively. Their point-

ise matching cost is measured using χ2 distance as 

(p i , q j ) = 

1 

2 

∑ 

k 

[ p i (k ) − q j (k )] 2 

p i (k ) + q j (k ) 
. (2)

fter obtaining the matching cost C ( p i , q j ) for all pairs of elements

 i ∈ p and q j ∈ q , Hungarian algorithm is applied to find the opti-

al correspondence as 

(π ) = arg min 

π

n ∑ 

i 

C 
(
q i , p π(i ) 

)
, (3) 

here π is a permutation indicating that the matching is one-to-

ne. 

keleton path. We implement skeleton path proposed in [8] as the

econd similarity measure, which is based on skeleton analysis. In

his subsection, we give a brief review of skeleton path. One can

efer to the study in [8] for more details if necessary. 

Assuming that the skeleton curve is one pixel wide, three kinds

f points are defined: end point, junction point and connection

oint. The end point is defined as the skeleton point owning one

djacent point. The skeleton point with more than two adjacent

oints is named a junction point, and the rest are connection

oints. To build the skeleton graph, both end points and junction

oints are chosen as the nodes of the graph. The edges between

wo adjacent nodes are the skeleton branches between them. 

Given a pair of nodes u , v in a skeleton graph, the skeleton path

 (u, v ) is defined as the shortest path along the skeleton graph be-

ween u and v . Let P (u q , v q ) and P (u p , v p ) represent two skeleton

aths from shape s q and s p respectively. Their path distance is de-

ned as 

pd ( P (u q , v q ) , P (u p , v p ) ) = 

M ∑ 

i =1 

(r qi − r pi ) 
2 

r qi + r pi 

+ α
(l q − l p ) 2 

l q + l p 
, (4) 

here r qi and r pi (0 ≤ i ≤ M ) represent the radii of the maximal

isks centered at the M sample points of skeleton paths P (u q , v q )
nd P (u p , v p ) respectively. l q and l p are their lengths, and α is the

eighting factor. 

Assume that the skeleton graph of s q , denoted as E q =
 e q 1 , . . . , e q nq } , has nq end points, and the skeleton graph of s p ,

enoted as E p = { e p 1 , . . . , e p np } , has np end points. The pairwise

istance between each pair of end points e q i and e p j , referred as

d(e q i , e p j ) , is computed via Optimal Subsequence Bijection (OSB)

s in [8] . Then we can get a nq × np distance matrix �( E q , E p ) : 
 

 

 

ed(e q 1 , e p 1 ) ed(e q 1 , e p 2 ) . . . ed(e q 1 , e p np 
) 

ed(e q 2 , e p 1 ) ed(e q 2 , e p 2 ) . . . ed(e q 2 , e p np 
) 

. . . . . . . . . . . . 

ed(e q nq 
, e p 1 ) ed(e q nq 

, e p 2 ) . . . ed(e q nq 
, e p np 

) 

⎞ 

⎟ ⎠ 

(5) 

fter applying the Hungarian algorithm on �( E q , E p ), we can get

he optimal correspondence ϕ : { e q 1 , . . . , e q nq } → { e p 1 , . . . , e p np } be-

ween end points in E q and those in E p . Thus the matching cost,

lso the dissimilarity between two shapes, is obtained. 

.2. Co-trained spectral clustering 

As a representative of graph-based clustering algorithms, spec-

ral clustering exploits the properties of Laplacian of the affinity

raph. Spectral clustering algorithms are usually divided into two
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Algorithm 1 The algorithm of spectral clustering. 

Input: The similarity matrix W ∈ R 

N×N 

Output: The clustering result I ∈ R 

N×1 . 

1: Compute the diagonal matrix D (i, i ) = 

∑ 

j W (i, j) ; 

2: Compute the graph Laplacian l = D 

−1 / 2 W D 

−1 / 2 ; 

3: Let U ∈ R 

N×k denote the top- k eigenvectors of l, which are L 2 

row-normalized later; 

4: Treat each row of U as a feature, and apply standard K-means 

to produce the final clustering result I. 
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categories: normalized spectral clustering and unnormalized spec-

tral clustering. What we adopt here is normalized spectral cluster-

ing, since it has been extensively testified that normalized Lapla-

cian affinity graph can yield better performances. The pseudocode

of spectral clustering used in this paper is given in Algorithm 1 . 

The primary drawback of spectral clustering is that it can only

deal with one type of similarity measure. In order to adapt it to

multi-view settings, i.e. , multiple independent features are avail-

able, a possible solution is leveraging co-training algorithm [41] .

Co-training is initially designed for semi-supervised learning, re-

quiring two views of data. The basic assumption of co-training is

that either view of data is sufficient to predict the class labels of

instances accurately. Co-training is an iterative algorithm. It first

learns a separate classifier for each view on labeled data. Then

the confident predictions of each classifier on unlabeled data are

taken as additional labeled data in the next iteration. To apply co-

training to unsupervised shape clustering, a naive way is to change

the edge weight of a node pair in one graph according to the clus-

tering results of other graphs. However, it is difficult to determine

the degree by which the edge weights are changed. 

Our solution here is to project the affinity graph using the

eigenvectors of another affinity graph, then back-project it to the

original space as in [23] . As a result, the essential information for

clustering can be preserved and the intra-clustering information

is thrown away. This procedure is conducted conversely and iter-

atively. The pseudocode of co-trained spectral clustering is given

in Algorithm 2 . The symmetrization operator on an affinity matrix

is defined as sym (S) = (S + S T ) / 2 . 

Unfortunately, such a co-trained paradigm cannot guarantee

convergence. Consequently, if no prior information is available, we

cannot determine how many iterations we need and when the

best performance is achieved. To tackle the problem, we propose

a consensus-based voting scheme in Section 3.4 to aggregate the

clustering results of different iterations, thus mining their consen-

sus clusters automatically. 
Algorithm 2 The algorithm of co-trained spectral clustering. 

Input: Similarity matrices: W 1 , W 2 

Output: The clustering results I 1 
k 
, I 2 

k 
∈ R 

N×1 . 

1: Initialization: for v = 1 , 2 , l v = D 

−1 / 2 
v W v D 

−1 / 2 
v , where D v is a di- 

agonal matrix with D v (ii ) = 

∑ 

j W v (i, j) ; Let U 

0 
v ∈ R 

N×k denote 

the top-k eigenvectors of l v . 

2: for k = 1 to IT ER do 

3: S k 
1 

= sym (U 

k −1 
2 

U 

k −1 T 

2 
W 1 ) ; 

4: S k 
2 

= sym (U 

k −1 
1 

U 

k −1 T 

1 
W 2 ) ; 

5: Take S k 
1 

and S k 
2 

as the new affinity matrices. Solve for the 

largest k eigenvectors to obtain U 

k 
1 

and U 

k 
2 

. 

6: Row-normalize U 

k 
1 

and U 

k 
2 

. 

7: Apply standard K-means to produce the clustering result I 1 
k 

and I 2 
k 

. 

8: end for 
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.3. Density-initialized seeds 

In the procedure of spectral clustering, K-means is used to pro-

ide the final clustering results. However, it is known that K-means

s prone to reach local minima with random initialization of cen-

roids. As a result, two runs of spectral clustering probably result

n two entirely different clusters. 

To remedy this, we propose an efficient method to initialize the

entroids inspired by the recent development of density analysis

n the data manifold. Similar to density peak [31] , our motiva-

ion is that centroids are surrounded by neighbors with lower local

ensity and they are also far away from any points with higher lo-

al density. 

The local density ρ i of shape s i in the feature manifold is 

i = 

∑ 

j 

H(d i j − d c ) , (6)

here d c is a pre-defined cut-off distance, and H(·) is the indicator

unction defined as 

(x ) = 

{
1 , if x < 0 , 

0 , otherwise . 
(7)

s suggested in [31] , d c is determined so that the average num-

er of neighbors is 2% of the total number of points in the feature

pace. Then, we use σ i to measure the minimum distance between

hape s i and any other shapes with higher density: 

i = min 

j: ρ j >ρi 

(d i j ) . (8)

or the shape with the highest density, we manually take σi =
ax j (d i j ) . 

As a result, our density-initialized seeds are set as follows. For

ach view and each iteration of co-trained spectral clustering, the

ow dimensional embedding of all shapes is obtained as spectral

lustering usually does. Then, we estimate the local density ρ i 

nd σ i for each shape s i ∈ S in the induced embedding space. By

orting the shapes in decreasing order according to ρ i σ i , the top-

 shapes are taken as the seeds for centroid initialization when

pplying the standard K-means. 

.4. Consensus-based voting 

Co-trained spectral clustering is an iterative algorithm without

uaranteed convergence, hence it should be stopped within a fixed

umber of iterations. However, without the property of conver-

ence, one cannot know which similarity measure at which iter-

tion yields the best performance if no prior knowledge is avail-

ble. To address this issue, we propose a novel and robust method

hat aggregates the clustering results of different similarity mea-

ures and different iterations. 

We aim at identifying the best-performing clustering result

uch that it will have the largest confidence score. However, it is

he chicken or the egg dilemma here. If the best performance can

e identified, we can determine the confidence scores of differ-

nt clustering results accordingly, and vice versa. Our solution is to

ine the consensus information among different clustering results,

nd vote for the so-called “correct clusters” by using the consensus

nformation. 

The co-trained spectral clustering is run for finite iterations

10 times in our experiments). Let I ( s ) denote the function that
k i 
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Fig. 1. The clusters on Aslan and Tari dataset with 56 shapes generated by our 

method. 

4

 

e

 

a  

i  

s  

g  

f  

r  

n  

e  

t

 

i  

[  

t

4

 

w  

fi  

t  

s  

p  

w  

t

 

p  

o  

f  

s  

s  

b  

v  

f  

c

ives shape s i clustering assignment in the k -th iteration. Then we

efine 

 (s i , s j ) = 

∑ 

k 

δI k (s i ) ,I k (s j ) , (9)

here δ is the Kronecker delta. 

In a sense, L ( s i , s j ) can be also interpreted as a new type of

ffinity between shape s i and s j , i.e. , if s i and s j are classified

nto the same cluster in most iterations, they are similar with

ach other. It naturally inspires us to use spectral clustering in

lgorithm 1 on L to obtain the final clustering result. 

Meanwhile, we can identify those shape pairs ( s i , s j ) that satisfy

 ( s i , s j ) ≥ ξ as correct pairs. Since we have two similarity measures

nd the iteration number is 10, 20 clustering results can be ob-

ained. We set ξ to 15 throughout our experiments, which means

hat if 3/4 clustering results classify a pair of shapes in the same

luster, we identify them to be a correct pair. By doing so, the con-

dence score of each clustering result can be determined by count-

ng how many times it hits the correct pairs. The weight is deter-

ined by applying sigmoid function to the number of correct pairs.

et w k denote the weight learned in such a voting scheme, then

he affinity graph built here is slightly different from Eq. (9) as 

 w 

(s i , s j ) = 

∑ 

k 

δI k (s i ) ,I k (s j ) w k . (10)

he experimental results suggest that when spectral clustering is

pplied to Eq. (10) instead of Eq. (9) , around 1 percent performance

ain in NMI can be achieved. 

. Experiments 

To evaluate the effectiveness of the proposed method, three

tandard shape datasets are chosen for comparison following [33] : 

• Aslan and Tari dataset with 56 shapes [2] : it contains 56

shapes, with 4 shapes in each class. 
• Aslan and Tari dataset with 180 shapes [1] : it consists of 180

shapes divided into 30 classes, with 6 shapes in each class. 
• Aslan and Tari dataset with 10 0 0 shapes [12] : it consists of

10 0 0 articulated shapes, grouped into 50 categories with 20

shapes in each class. 

We compare the performance of the proposed co-spectral

ethod against several state-of-the-art algorithms listed as fol-

ows: 

• CSD [33] : Common Structure Discovery (CSD) is a represen-

tative agglomerative hierarchical shape clustering algorithm. It

can extract the common structures which capture the intrinsic

intra-class structural information of clusters of shapes. 
• Game theoretic approach [21] : it is a game theoretic approach

that can discover shape categories and compute the corre-

sponding contextual similarities. 
• Foreground focus [26] : it first initializes the image-level group-

ing based on feature correspondences, and refines cluster as-

signments based on the evolving intra-cluster pattern of local

matches iteratively. 
• IDSC+Ncuts: Inner Distance Shape Context (IDSC) [27] is used as

raw shape descriptors, and Dynamic Programming (DP) is used

for pairwise matching under χ2 metric. Normalized cuts [34] is

used for clustering. 
• JPD+Ncuts: Normalized cuts with junction path distance [8] as

the similarity between shapes. 
• JPD+AHC: agglomerative hierarchical clustering with junction

path distance as the similarity between shapes. 

All the results are quoted from [21,33] . 
.1. Implementation details 

If not stated otherwise, we adopt the following setup for all the

xperiments. 

First, we compute pairwise shape distances using shape context

nd skeleton path. The weight factor α in computing skeleton path

s set to 100, since the performance is insensitive to this value as

uggested in [33] . Gaussian kernel is applied to build two affinity

raphs, serving as two independent views. Then, the two views are

ed into co-trained spectral clustering for 10 iterations, incorpo-

ated with density-initialized seeds. We manually set the desired

umber of clusters to be equal to the natural number of classes on

ach dataset. Finally, consensus-based voting scheme is used to get

he clustering result. 

The evaluation metric used in this paper is normalized mutual

nformation (NMI), a widely-accepted metric in clustering analysis

21,33] . Our performance comparison involves two parts: qualita-

ive examples and quantitative analysis. 

.2. Qualitative analysis 

The clusters generated by co-spectral on Aslan and Tari dataset

ith 56 shapes are illustrated in Fig. 1 . As can be drawn from the

gure, our method achieves the nearly perfect performance, and

he purity in each cluster is extremely high. Among all the 56

hapes, there is merely one error: one windmill is clustered into

entagrams. This is caused by small inter-class variations between

indmill class and pentagram class. Even when two complemen-

ary features are used, it is still hard to tell them apart. 

Common structure discovery (CSD) achieves the second best

erformance on this dataset. As illustrated in Fig. 2 (a), two errors

ccur, i.e. , four windmills are grouped with pentagrams and a bone

orms a unique cluster. The primary reason behind this is that the

keleton-based descriptor used in CSD fails to capture the object

ilhouette. Whereas, shapes in these two classes are more easily to

e distinguished using contour-based descriptor, since they share

ery similar skeleton structures. In this case, our method benefits

rom the usage of shape context and significantly improves the dis-

riminative power of the skeleton path. 
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Fig. 2. The clusters on Aslan and Tari dataset with 56 shapes achieved by common structure discovery (a), IDSC+Ncuts (b), JPD+Ncuts (c) and JPD+AHC (d). 

Table 1 

The performance comparison in NMI of different algorithms. 

Methods 56 shapes 180 shapes 10 0 0 shapes 

IDSC+Ncuts 0.5660 0.5423 0.5433 

JPD+Ncuts 0.6174 0.5785 0.4549 

JPD+AHC 0.8674 0.8793 0.7693 

Foreground focus – – 0.7329 

CSD 0.9734 0.9694 0.8096 

Game theoretic approach – – 0.8722 

Shape context+spectral 0.9418 0.9264 0.9676 

Skeleton path+spectral 0.9426 0.9746 0.9154 

Co-spectral (ours) 0.9900 0.9901 0.9711 
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4.3. Quantitative analysis 

For a numerical quantitative analysis, we use normalized mu-

tual information (NMI) to measure the clustering performance. The

NMIs of our method and other state-of-the-art algorithms on the

Aslan and Tari dataset with 56 shapes, 180 shapes and 10 0 0 shapes

are listed in Table 1 . 

As we can see from the table, the proposed method achieves

the best performance on all datasets. Compared with common

structure discovery, co-trained spectral clustering yields 1.60%,

2.07% and 16.15% improvements on Aslan and Tari dataset with 56

shapes, 180 shapes and 10 0 0 shapes respectively. Foreground focus
26] can learn the categories in an unsupervised way through the

ocal matching of features. The result of foreground focus comes

rom [21] , where inner distance shape context [27] is extracted on

he boundary points and Normalized cuts [34] is adopted to deter-

ine the clusters. Note that co-spectral beats foreground focus by

bout 20 percents on Aslan and Tari dataset with 10 0 0 shapes. 

On the largest Aslan and Tari dataset with 10 0 0 shapes, the

revious state-of-the-art performance is achieved by the game the-

retic approach [21] . It discovers the shape categories and the

orresponding contextual similarities simultaneously. However, its

erformance is 10 percents inferior to our approach. 

The performances of shape context and skeleton path using

ormalized spectral clustering ( Algorithm 1 ) are also given. We

lso insert density-initialized seeds to it as co-spectral does. It can

e observed that co-spectral achieves better performances than the

tandard spectral clustering. 

.4. Experiments on MPEG-7 dataset 

MPEG-7 dataset [25] consists of 1400 shapes divided into 70

ategories. Each category has 20 shapes. Since MPEG-7 dataset is

nitially designed for shape retrieval, few methods have reported

he clustering results. Following [11] , we use Inner Distance Shape

ontext (IDSC) [27] as the input similarity measure. The other

imilarity measure we choose is based on Shape Context, since

he complementary nature between IDSC and SC has been proven
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Table 2 

The performance comparison in NMI on MPEG-7 dataset. 

Methods SC IDSC 

Spectral clustering ( Algorithm 1 ) 0.8454 0.7813 

Graph transduction [11] 0.8600 

Co-spectral (ours) 0.9301 

Fig. 3. The advantage of density-initialized seeds. 
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Fig. 4. The performances of each single view counterpart in co-trained spectral 

clustering, as iteration number increases. (For interpretation of the references to 

color in this figure, the reader is referred to the web version of this article). 

Table 3 

The execute time comparison on Aslan and Tari dataset 

with 56 shapes. 

Common structure discovery [33] Co-spectral (ours) 

204.58 s 0.72 s 
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1 http://wei-shen.weebly.com/publications.html . 
xtensively in shape retrieval [3,10] . The evaluation metric used in

11] is defined as the ratio of the number of correct pairs of shapes

o the highest possible number of correct pairs. Hence, the best

core is 1. 

As can be seen from Table 2 clearly, the proposed co-spectral

utperforms Graph Transduction (GT) [11] by a large margin. It

hould be mentioned here that GT is a context-based similarity

earning algorithm. It aims at learning a more faithful similarity

etric for robust shape retrieval. In order to extend it to shape

lustering, affinity propagation [22] is applied to the learned simi-

arity for clustering. Affinity propagation does not require the prior

nowledge about the natural number of categories. Thus, the num-

er of clusters produced by affinity propagation is not necessarily

qual to the number of categories. As suggested in [11] , AP pro-

uces 58 clusters, smaller than the category number 70 on the

PEG-7 dataset. 

There are some other algorithms which report their clustering

esults on MPEG-7 dataset. These methods ( e.g. , [14,15,36,39] ) only

se a subset of MPEG-7 dataset. Therefore, they are not directly

omparable to the method proposed in this paper. 

.5. Discussion 

entroid initialization. Spectral clustering usually initializes the

entroids randomly, which tends to reach local minima. In

ection 3.3 , we propose a robust way for centroid initialization us-

ng density analysis. In Fig. 3 , the advantage of density-initialized

eeds over random initialization is given. We apply spectral cluster-

ng on two affinity graphs obtained by shape context and skeleton

ath respectively. To obtain the performance of random initializa-

ion, we repeat the clustering process for 50 times and report the

verage NMI as well as the standard deviation. As can be seen from

he figure, density-initialized seeds achieve much better and more

table performances than random initialization. 

onsensus voting. In Fig. 4 , we plot performances of the single

iew counterpart of co-trained spectral clustering with density-

nitialized seeds. As can be seen clearly, co-trained spectral clus-

ering cannot guarantee the convergence of iteration. In fact, most

lgorithms based on co-training are not convergent at all. 

The blue line depicts the performance of consensus-based vot-

ng. As we can see, such a voting scheme can well capture the con-

ensus information among the clustering results of different itera-
ions and different views, thus yielding stable and nearly perfect

erformances. 

omplexity analysis. In each iteration, we need to compute two

ew similarity matrices by multiplying three matrices, whose sizes

re N × k , k × N and N × N respectively. Recall that k is the em-

edding dimension. Therefore, the time complexity of our method

s upper-bounded by O ( N 

3 ), which seems to be a bit high. How-

ver, the operation of matrix multiplication can be well optimized

sing the Coppersmith-Winograd algorithm or Optimized CW-like

lgorithms. 

In Table 3 , we give a comparison in execute time on Aslan

nd Tari dataset with 56 shapes with the state-of-the-art algo-

ithm, i.e. , Common Structure Discovery (CSD). CSD is implemented

sing the public available codes. 1 In order to keep the compar-

son fair, all the experiments are run with Matlab in a personal

omputer with an Intel(R) Core(TM) i5 CPU (3.40 GHz) and 16GB

emory. As we can see from Table 3 , the proposed co-spectral is

t least 3 orders of magnitude faster than CSD. 

. Conclusion 

In this paper, we address the shape clustering issue based on

pectral clustering, taking advantage of its suitable characteristics

or shape analysis. Two complementary shape features, i.e. , shape

ontext and skeleton path, are fused in the framework of co-

rained spectral clustering. We further propose two important

mprovements over co-trained spectral clustering. Incorporated 

ith density-initialized seeds, spectral clustering can avoid local

inima and generate more stable clustering results. Meanwhile,

onsensus-based voting solves the bottleneck of misconvergence

f co-training algorithms, and mines the consensus information

mong different clustering results. Extensive experimental results

emonstrate the advantage of the proposed method over other

tate-of-the-art algorithms on three popular shape datasets. 

http://wei-shen.weebly.com/publications.html
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