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Abstract—This letter introduces a robust representation of
3-D shapes, named DeepPano, learned with deep convolutional
neural networks (CNN). Firstly, each 3-D shape is converted into a
panoramic view, namely a cylinder projection around its principle
axis. Then, a variant of CNN is specifically designed for learning
the deep representations directly from such views. Different from
typical CNN, a row-wise max-pooling layer is inserted between
the convolution and fully-connected layers, making the learned
representations invariant to the rotation around a principle axis.
Our approach achieves state-of-the-art retrieval/classification
results on two large-scale 3-D model datasets (ModelNet-10 and
ModelNet-40), outperforming typical methods by a large margin.
Index Terms—3-D shape, classification, convolutional neural

networks, panorama, retrieval.

I. INTRODUCTION

T HREE-DIMENSIONAL shapes carry rich information
of real-world objects, and are important cues for object

recognition. The analysis of 3-D shapes is a fundamental
problem, and has a wide range of applications in medical
imaging, computer aided design (CAD), virtual reality, etc..
One of the most important challenges in 3-D shape analysis is
to obtain a good representation for shapes. The performance of
many tasks, including shape classification and shape retrieval,
heavily depend on the quality of the representation.
In this letter, we propose a 3-D shape descriptor called Deep-

Pano for 3-D shape classification and retrieval, which is di-
rectly learned from the panoramic views of 3-D models. The
panoramic view is a cylinder projection of a 3-D model around
its principle axis. Therefore, the panoramic views are in the form
of 2-D images, which can be considered as a holistic represen-
tation of 3-D models. We use convolutional neural network [1]
(CNN) to learn a deep representation from such views. To make
the learned deep features invariant to the rotation around the
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principle axis, a special layer named Row-Wise Max-Pooling
(RWMP) layer is presented and inserted between the convolu-
tion layers and the fully-connected layers. This layer takes the
maximum value of each row in the convolutional feature maps.
Consequently, the output feature vector is not affected by the
shift of the panoramic view, caused by the rotation of 3-D shape.
The previous methods on 3-D shape analysis can be coarsely

categorized into model-based and view-based methods. Model-
based methods calculate a set of features directly from the 3-D
shape mesh or its rendered voxels. Such methods include the
Shape Histogram descriptor [2] and the Spin Images [3]. View-
based methods represent 3-D shapes by a set of views [4]–[10].
The views can be 2-D projections of the shape or the panoramic
view. We extract the shape representation from the panoramic
view. However, different from most of the methods mentioned
above that use hand-crafted features, we learn the representa-
tion from data with a variant of CNN. Deeply learned repre-
sentations are widely used and have achieved superior perfor-
mance in many pattern recognition and signal processing tasks
[11]–[13]. There are other attempts that represent 3-D shapes
by deep features. Recently, Wu et al. [14] proposes the 3-D
ShapeNets, a Convolutional Deep Belief Network for shape rep-
resentation. Different from [14] which performs 3-D convolu-
tions on the voxels, we extract the representation of a 3-D shape
from 2-D images. Compared with [14], our method achieves
better performances on both classification and retrieval tasks
(refer to Section III), and is simpler to implement using any open
source framework.
Our method is related to previously introduced PANORAMA

[6]. In [6], Panagiotis et al. proposed to represent a 3-D shape by
the Discrete Fourier Transform and DiscreteWavelet Transform
descriptors calculated from a set of panoramic views. However,
the panoramic view shifts when the 3-D shape rotates along its
principle axis. In [6], this problem is alleviated by pose normal-
ization. As illustrated in Fig. 1, the convolutional feature maps
extracted from panoramic views shifts when the 3-D shape ro-
tates. We pool the the responses of each row so that the resulting
representation is not affected by this kind of shift. As a result,
the representation is invariant to the 3-D shape rotation.
To summarize, the key contribution of this letter is the deep

panoramic representation that is rotation-invariant to the prin-
ciple axis. The experiments on large-scale 3-D shape datasets
show that this representation is effective in both classification
and retrieval tasks, outperforming previous methods by a large
margin.
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Fig. 1. Rotation invariance of DeepPano: (a) 3-D shapes of the same model,
but rotated to different angles; (b) Convolutional feature map for each 3-D
shape; (c) Output vectors of the RWMP layer; (d) Comparisons among within
model distances, within class distances and between class distances (Refer to
Section III-E for details).

The rest of this letter is organized as follows. Section II in-
troduces the learning and extraction processes of the represen-
tation in detail. In Section III we verify the rotation invariance
of the representation, and evaluate its performance on classifi-
cation and retrieval tasks. Conclusions are drawn in Section IV.

II. METHODOLOGY

Our method consists of two main steps: (1) Generate the
panoramic views (Section II-A); (2) Learn and extract the
rotation-invariant representation from the views (Section II-B).
The representation is used for both classification and retrieval
tasks (Section II-C). Throughout this letter, we assume that
3-D models are upright oriented, so that the rotation is along a
axis that is also upright oriented. This assumption is satisfied in
many real-world model repositories, such as the 3-DWarehouse
[15].

A. Panoramic View Construction

To construct the panoramic view, the 3-D shape is projected
onto the lateral surface of a cylinder whose axis is parallel to
the principle axis of the 3-D shape. With the upright-orientation
assumption, we simply set as the origin point and
take z-direction as the orientation to obtain the principle axis.
In our approach, is calculated by the weighted average of
all triangles on the model mesh, where the weights are triangle
areas.
The projection process is illustrated in Fig. 2. We discretize

the lateral surface of the cylinder by a dense grid of points, rep-
resented by their coordinates , where is the polar
angle and is the height. For each grid point ,
a corresponding point is found by the Cartesian coordinate
( ), which is the point on the cylinder axis with the
same height as . A ray is cast from to , intersecting with
none, one or several triangles of the 3-D shape. The distances
between and the intersection points are recorded as

For each grid point, we assign
a value that is the max value in , or zero when is an empty
set:

Fig. 2. Panoramic view construction: (a) Illustration of the panoramic
view construction process. , and are respectively the grid point, the
corresponding point on the axis and the value assigned to that grid point;
(b) 3-D shapes and their corresponding panoramic views (with some padding
as describe in Section II-B).

After the projection, the lateral surface is unfolded from cer-
tain angle (we choose ) into the 2-D panoramic view,
whose pixel values are the ones assigned to the grid points. To
avoid the impact of scale changes of the shape, we choose the
cylinder to have the same height as the 3-D shape. In addition,
the panoramic view is subtracted by its mean and divided by its
standard deviation before further processing. Consequently, the
constructed panoramic view is not affected by the size of the
shape.

B. Representation Learning and Extraction

The panoramic view keeps most of the information of the 3-D
shape. Therefore, a 3-D shape can be described by the 2-D de-
scriptor extracted from its panoramic view. A straightforward
method is to train a CNN on the panoramic views of all training
data, and extract the representation from it. However, the view
shifts when the 3-D shape rotates. This shift will greatly affect
the representation produced by the CNN, although the CNNpro-
vides some form of translation invariance. Moreover, unfolding
the lateral surface creates two boundaries on the left and right
sides of the panoramic view. The boundaries cause artifacts in
the convolutional feature maps, thus affecting the representation
extracted.
In our approach, a variant of CNN is created to learn and

extract the representation, handling the issues mentioned above.
As illustrated in Fig. 3, firstly, to avoid boundary artifacts, the
panoramic view is padded on one side. The padded area is
cloned from the other side of the map. Specifically, we adopt a

padding size where is the height of the view.
To obtain rotation-invariance, the representation has to be

shift-invariant to the input panoramic view. The first few layers
of a typical CNN, namely the convolution layers and the max-
pooling layers produce feature maps that shift together with
the input view. Between these layers and the fully-connected
layers, we insert a layer called the row-wise max-pooling layer
(RWMP), which takes the maximum value of each row in the
input map and concatenate them into the output vector. The
output of the RWMP layer is not affected by the shift of the
input map, thus its output is invariant to the rotation of the 3-D
shape. The network is trained on a dataset consisting of pairs
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of panoramic views and class labels, using the back propaga-
tion algorithm [16]. Finally, the representation can be extracted
from the RWMP layer, or any fully-connected layer after it.

C. Recognition with the Representation
The extracted representation can be used for both classifica-

tion or retrieval tasks. Since the network for learning the repre-
sentation is itself a classifier, we direct adopt it for classification
tasks. The softmax layer on the top of the network outputs class
probabilities, and the class with the highest probability is taken
as the prediction (as illustrated in Fig. 3). For retrieval tasks,
we define the similarity between a pair of 3-D shapes as the Eu-
clidean distance between their -normalized descriptors. Since
each 3-D shape is represented by a fixed-length vector and Eu-
clidean distance is used for retrieval, we can perform fast re-
trieval on large-scale datasets, particularly when adopting some
approximate nearest neighbor search schemes, e.g.[17].

III. EXPERIMENTS

A. Datasets
PrincetonModelNet is a large-scale 3-D CADmodel datasets

that contains 127,915 CAD models in 662 object categories.
Two subsets of it are used for training and testing, namely
1) ModelNet-10, a 10-categories subset consisting of 4,899
CAD models. All models in this subset are manually cleaned
and their orientations are aligned. Among them 3,991 are used
for training and the rest 908 are used for testing; 2) Mod-
elNet-40, which has 12,311 models in 40 categories. 9,843
models are used for training and 2,468 are used for testing. The
models in ModelNet-40 are cleaned but not manually aligned.
Still, most models in this subset satisfy the upright assumption.

B. Implementation Details
In our implementation, each 3-D shape is projected into a

panoramic view. A patch is padded on the
right side, so that the input size to the network is . The
architecture of the network is specified in Fig. 3. For convolu-
tional layers (conv1 conv4), the numbers of feature maps are
respectively 96, 256, 384, 512 and the kernel sizes are respec-
tively 5, 5, 3, 3. A max-pooling layer is inserted after
each convolutional layer. The network is trained using the sto-
chastic gradient descent (SGD) with the momentum set to 0.9.
The dropout technique [18] is adopted on both fully-connected
layers (fc1 and fc2) in order to reduce overfitting.
We implement the GPU-accelerated network within the

Torch7 [19] framework. The construction of panoramic views
is implemented separately in MATLAB. Running on a machine
with Intel Core-i5 CPU, NVIDIA GTX780 GPU and 8 GB
RAM, the training process takes less than 4 hours to fully con-
verge. Rendering the panoramic view for each 3-D shape takes
less than 1s with an unoptimized CPU implementation, and
should be accelerated a great deal by a GPU implementation.

C. 3-D Shape Classification
To evaluate our method on 3-D shape classification tasks, we

train the classification network starting from random initializa-
tion. The trained network outputs class probabilities from its

Fig. 3. The network for learning and extracting shape representation. The net-
work takes the padded panoramic view as the input. On the top it outputs a
probability vector representing class probabilities. The 3-D shape representa-
tion can be extracted from the highlighted layers, namely RWMP, fc1 or fc2. (fc
means fully-connected layer, conv means convolution layer).

TABLE I
CLASSIFICATION ACCURACIES FOR VARIOUS METHODS ON THE MODELNET-10
AND MODELNET-40 DATASETS. BEST RESULTS ARE MARKED IN BOLD FONT

Fig. 4. Precision-recall curves for various methods on theModelNet-10 dataset
(left) and ModelNet-40 dataset (right).

softmax layer. The class with the highest probability is taken as
the prediction. The performance is evaluated by the average cat-
egory accuracy.We compare ourmethodwith the LightField de-
scriptor [7] (LFD, 4,700 dimensions), the Spherical Harmonics
descriptor [20] (SPH, 544 dimensions) and the 3-D ShapeNets
[14].
Table I summarizes the results. Our method outperforms all

the other methods by a large margin. In comparison with the
hand-crafted LFD, SPH and PANORAMA, which are also de-
signed to be rotation-invariant, our deeply-learned representa-
tion clearly shows a stronger discriminative power. Compared
with the 3-D ShapeNets, our method performs remarkbly better.
One of the reason is that we hard-code the rotation invariance
into the network architecture, making the representation rota-
tion invariant.
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Fig. 5. Examples showing the given query and the top 10 retrieved 3-D shapes,
sorted by matching distance. Mistakes are highlighted in red.

D. 3-D Shape Retrieval

In retrieval tasks, we extract the 3-D shape representations
from the RWMP, the fc1 or the fc2 layer in the network. For
each query from the test samples, we rank the rest test samples
based on the Euclidean distances between their normalized
descriptors. The performance is evaluated under two metrics:
(1) mean area under precision-recall curve (AUC); (2) mean
average precision (MAP). DeepPano is compared against the
the SPH [20], the LFD [7], the PANORAMA [6] and the 3-D
ShapeNets [14]. In addition, the representations extracted from
different layers are compared. Seen from the results summa-
rized in Table II and the precision-recall curves plotted in Fig. 4,
our representations consistently achieves higher or comparable
performances, compared with other methods. Specifically, the
representations extracted from fc1 and fc2 perform remarkably
better than previous state-of-the-art [14] on both datasets.
The RWMP representation performs slightly better than 3-D
ShapeNets on ModelNet-10, but the gap is still evident on the
larger ModelNet-40 dataset. In Fig. 5 we show some examples.

E. Discussion

Rotation Invariance: To verify the rotation invariance of the
proposed representation, we take the -normalized output of
the RWMP layer as the 3-D shape representation. For each of
the 100 randomly picked 3-D shapes, we generate 11 shapes by
rotating it 30, 60, , 330 degrees, and calculate the distances
between the shape and its rotated shapes. The average distances
for all the 11 angles are plotted in Fig. 1 (within model).
Our network is a combination of CNN and RWMP layer. To

verify the effectiveness of the two parts separately, we evaluate
a conventional CNN, which has the the same architecture as the
proposed network, except that it does not contain an RWMP

TABLE II
RETRIEVAL RESULTS ON MODELNET-10 AND MODELNET-40.

BEST RESULTS ARE MARKED IN BOLD FONT

layer. On ModelNet-10, the retrieval AUC and MAP are re-
spectively 85.25% and 84.16%. It is very close to our approach
(85.45% and 84.18%) since that ModelNet-10 is well aligned
and is not much affected by shape rotation. On the other hand,
ModelNet-40 contains models in different angles. The AUC and
MAP of the CNN are respectively 69.17% and 68.26%, and
our rotation-invariant approach shows significant higher perfor-
mance (77.63% and 76.81%).
Within/Between-Class Distance: We pick up 100 pairs of

same-class shapes (within class) and 100 pairs different-class
shapes (between class). The distances between these pairs are
calculated and Fig. 1 plots the average. Comparing the dis-
tances, we can see that the representation changes a little when
the shape rotates, therefore rotation-invariance is obtained.
Besides, as can be seen in Fig. 1, the representation exhibits
significantly larger between-class distances than within-class
distances, making it suitable for retrieval tasks.

IV. CONCLUSION

In this letter, we have introduced DeepPano, a rotation-in-
variant deep representation for 3-D shape classification and re-
trieval. Panoramic views are constructed from 3-D shapes and
representations are learned and extracted from them. DeepPano
outperforms previous methods by a large margin, on both clas-
sification and retrieval tasks. We have also experimentally ver-
ified the rotation invariance of the representation. The limita-
tion of our method is similar to many previous view-based ap-
proaches, requiring the principle axes of 3-D models, which
may fail to recognize the 3-D models with serious non-rigid de-
formation. In the future, some sequence prediction techniques
[21], [22] might be used for exploring more contextual infor-
mation, in order to further improve the performance of shape
recognition, as a panoramic view can be considered as a map
of feature sequence. In addition, to establish the robust align-
ments/correspondence [23], [24] between different panoramic
views is another direction that is worthy of being studied.
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