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a b s t r a c t 

Recently, graph neural networks have attracted great attention and achieved prominent performance in 

various research fields. Most of those algorithms have assumed pairwise relationships of objects of in- 

terest. However, in many real applications, the relationships between objects are in higher-order, beyond 

a pairwise formulation. To efficiently learn deep embeddings on the high-order graph-structured data, 

we introduce two end-to-end trainable operators to the family of graph neural networks, i.e. , hypergraph 

convolution and hypergraph attention. Whilst hypergraph convolution defines the basic formulation of 

performing convolution on a hypergraph, hypergraph attention further enhances the capacity of repre- 

sentation learning by leveraging an attention module. With the two operators, a graph neural network is 

readily extended to a more flexible model and applied to diverse applications where non-pairwise rela- 

tionships are observed. Extensive experimental results with semi-supervised node classification demon- 

strate the effectiveness of hypergraph convolution and hypergraph attention. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

In the last decade, Convolution Neural Networks (CNNs)

1] have led to a wide spectrum of breakthrough in various re-

earch domains, such as visual recognition [2] , speech recognition

3] , machine translation [4] etc . Due to its innate nature, CNNs hold

n extremely strict assumption, that is, input data shall have a reg-

lar and grid-like structure. Such a limitation hinders the promo-

ion and application of CNNs to many tasks where data of irregular

tructures widely exists. 

To handle the ubiquitous irregular data structures, there is a

rowing interest in Graph Neural Networks (GNNs) [5] , a method-

logy for learning deep models with graph data. GNNs have a wide

pplication in social science [6] , knowledge graph [7] , recommen-

ation system [8] , geometrical computation [9] , etc . And most ex-

sting methods assume that the relationships between objects of

nterest are in pairwise formulations. Specifically in a graph model,

t means that each edge only connects two vertices (see Fig. 1 (a)). 

However, in many real applications, the object relationships are

uch more complex than pairwise. For instance in recommenda-

ion systems, an item may be commented by multiple users. By

aking the items as vertices and the rating of users as edges of a

raph, each edge may connect more than two vertices. In this case,

he affinity relations are no longer dyadic (pairwise), but rather

riadic, tetradic or of a higher-order. This brings back the con-
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ept of hypergraph [10–13] , a special graph model which lever-

ges hyperedges to connect multiple vertices simultaneously (see

ig. 1 (b)). Unfortunately, most existing variants of graph neural

etworks [14,15] are not applicable to the high-order structure en-

oded by hyperedges. 

Although the machine learning and pattern recognition com-

unity has witnessed the prominence of graph neural networks

n learning patterns on simple graphs, the investigation of deep

earning on hypergraphs is still in a very nascent stage. Consider-

ng its importance, we propose hypergraph convolution and hyper-

raph attention in this work, as two strong supplemental operators

o graph neural networks. The advantages and contributions of our

ork are as follows 

1) Hypergraph convolution defines a basic convolutional operator

in a hypergraph. It enables an efficient information propagation

between vertices by fully exploiting the high-order relationship

and local clustering structure therein. We mathematically prove

that graph convolution is a special case of hypergraph convolu-

tion when the non-pairwise relationship degenerates to a pair-

wise one. 

2) Apart from hypergraph convolution where the underlying struc-

ture used for propagation is pre-defined, hypergraph attention

further exerts an attention mechanism to learn a dynamic con-

nection of hyperedges. Then, the information propagation and

gathering is done in task-relevant parts of the graph, thereby

generating more discriminative node embeddings. 

3) Both hypergraph convolution and hypergraph attention are

end-to-end trainable, and can be inserted into most variants

of graph neural networks as long as non-pairwise relation-

https://doi.org/10.1016/j.patcog.2020.107637
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Fig. 1. The difference between a simple graph (a) and a hypergraph (b). In a simple 

graph, each edge, denoted by a line, only connects two vertices. In a hypergraph, 

each edge, denoted by a colored ellipse, connects more than two vertices. 
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ships are observed. Extensive experimental results on bench-

mark datasets demonstrate the efficacy of the proposed meth-

ods for semi-supervised node classification. 

The rest of paper is organized as follows. In Section 2 , we

briefly review some representative methods in graph learning

and graph neural networks. In Section 3 , we systematically in-

troduce the motivation, formulation and implementation of the

proposed method. Experimental evaluations and comparisons

are presented in Section 4 , followed by the conclusions and fu-

ture work given in Section 5 . 

2. Related work 

Graphs are a classic kind of data structure [16–18] , where its

vertices represent objects and its edges linking two adjacent ver-

tices describe the relationship between the corresponding objects. 

Graph Neural Network (GNN) is a methodology for learning

deep models or embeddings on graph-structured data, which was

first proposed by Scarselli et al. [5] . One key aspect in GNN is

to define the convolutional operator in the graph domain. Bruna

et al. [19] firstly define convolution in the Fourier domain using

the graph Laplacian matrix, and generate non-spatially localized

filters with potentially intense computations. Henaff et al. [20] en-

able the spectral filters spatially localized using a parameterization

with smooth coefficients. Defferrard et al. [21] focus on the effi-

ciency issue and use a Chebyshev expansion of the graph Lapla-

cian to avoid an explicit use of the graph Fourier basis. Kipf and

Welling [22] further simplify the filtering by only using the first-

order neighbors and propose Graph Convolutional Network (GCN),

which has demonstrated impressive performance in both efficiency

and effectiveness with semi-supervised classification tasks. 

Meanwhile, some spatial algorithms directly perform convolu-

tion on the graph. For instance, Duvenaud et al. [23] learn different

parameters for nodes with different degrees, then average the in-

termediate embeddings over the neighborhood structures. Niepert

et al. [24] propose the PATCHY-SAN architecture, which selects a

fixed-length sequence of nodes as the receptive field and gener-

ate local normalized neighborhood representations for each of the

nodes in the sequence. Atwood and Towsley [25] demonstrate that

diffusion-based representations can serve as an effective basis for

node classification. Zhuang and Ma [26] further explore a joint us-

age of diffusion and adjacency basis in a dual graph convolutional

network. Gilmer et al. [27] defines a unified framework via a mes-

sage passing function, where each vertex sends messages based on

its states and updates the states based on the message of its imme-

diate neighbors. Hamilton et al. [6] propose GraphSAGE, which cus-

tomizes three aggregating functions, i.e. , element-wise mean, long

short-term memory and pooling, to learn embeddings in an induc-

tive setting. 

Some other works focus on gate mechanism [28] , skip connec-

tion [29] , jumping connection [30] , attention mechanism [31] , sam-

pling strategy [32,33] , hierarchical representation [34] , generative
odels [35,36] , adversarial attack [37] , etc . As a thorough review is

imply unfeasible due to the space limitation, we refer interested

eaders to surveys for more representative methods. For example,

hang et al. [14] and [15] present two systematical and compre-

ensive surveys over a series of variants of graph neural networks.

ronstein et al. [9] provide a review of geometric deep learning.

attaglia et al. [38] generalize and extend various approaches and

how how graph neural networks can support relational reason-

ng and combinatorial generalization. Lee et al. [39] particularly

ocus on the attention models for graphs, and introduce three in-

uitive taxonomies. Monti et al. [40] propose a unified framework

alled MoNet, which summarizes Geodesic CNN [41] , Anisotropic

NN [42] , GCN [22] and Diffusion CNN [25] as its special cases. 

As analyzed above, most existing variants of GNN assume pair-

ise relationships between objects, while our work operates on

 high-order hypergraph [43,44] where the between-object rela-

ionships are beyond pairwise. Hypergraph learning methods dif-

er in the structure of the hypergraph, e.g. , clique expansion and

tar expansion [45] , and the definition of hypergraph Laplacians

46–4 8] . Following [21,4 9] propose a hypergraph neural network

sing a Chebyshev expansion of the graph Laplacian. By analyzing

he incident structure of a hypergraph, our work directly defines

wo differentiable operators, i.e. , hypergraph convolution and hy-

ergraph attention, which is intuitive and flexible in learning more

iscriminative deep embeddings. 

. Proposed approach 

In this section, we first give the definition of hypergraph in

ection 3.1 , then elaborate the proposed hypergraph convolution

nd hypergraph attention in Section 3.2 and Section 3.3 , respec-

ively. At last, Section 3.4 provides a deeper analysis of the proper-

ies of our methods. 

.1. Hypergraph revisited 

Most existing works [22,31] operate on a simple graph G =
(V, E) , where V = { v 1 , v 2 , . . . , v N } denotes the vertex set and

 ⊆V × V denotes the edge set. A graph adjacency matrix A ∈ R 

N×N 

s used to reflect the pairwise relationship between every two ver-

ices. The underlying assumption of such a simple graph is that

ach edge only links two vertices. However, as analyzed above, the

elationships between objects are more complex than pairwise in

any real applications. 

To describe such a complex relationship, a useful graph model

s hypergraph, where a hyperedge can connect more than two ver-

ices. Let G = (V, E) be a hypergraph with N vertices and M hy-

eredges. Each hyperedge ε ∈ E is assigned a positive weight W εε ,

ith all the weights stored in a diagonal matrix W ∈ R 

M×M . Apart

rom a simple graph where an adjacency matrix is defined, the hy-

ergraph G can be represented by an incidence matrix H ∈ R 

N×M 

n general. When the hyperedge ε ∈ E is incident with a vertex

 i ∈ V , in other words, v i is connected by ε, H iε = 1 , otherwise 0.

hen, the vertex degree is defined as 

 ii = 

M ∑ 

ε=1 

W εεH iε (1)

nd the hyperedge degree is defined as 

 εε = 

N ∑ 

i =1 

H iε . (2)

ote that D ∈ R 

N×N and B ∈ R 

M×M are both diagonal matrices. 

In the following, we define the operator of convolution on the

ypergraph G. 



S. Bai, F. Zhang and P.H.S. Torr / Pattern Recognition 110 (2021) 107637 3 

3

 

p  

t  

b  

t  

t  

p  

p  

a

x

w  

σ  

e  

X  

w  

a

 

w  

o  

l  

a  

a  

n

X  

H  

t  

t  

t

i  

p

X  

w  

t

 

u  

g

3

 

a  

p  

a  

p  

a  

g  

p  

a  

l

 

o  

i  

p  

v  

p  

d  

d

 

v  

t  

l  

I  

F  

a  

f  

o  

p  

b  

h

H

w  

h  

s  

f  

t

s  

H  

o

 

o  

b  

a

 

f  

s  

p  

m  

w

3

 

p  

b  

p

 

p  

d  

r  

t

 

c  

e

 

t  

v  

p  

g  

c

X

w  

e  
.2. Hypergraph convolution 

The primary obstacle to defining a convolution operator in a hy-

ergraph is to measure the transition probability between two ver-

ices, with which the embeddings (or features) of each vertex can

e propagated in a graph neural network. To achieve this, we hold

wo assumptions: 1) more propagations should be done between

hose vertices connected by a common hyperedge, and 2) the hy-

eredges with larger weights deserve more confidence in such a

ropagation. Then, one step of hypergraph convolution is defined

s 

 

(l+1) 
i 

= σ

( 

N ∑ 

j=1 

M ∑ 

ε=1 

H iεH jεW εεx (l) 
j 

P 

) 

, (3) 

here x (l) 
i 

is the embedding of the i th vertex in the ( l )th layer.

( · ) is a non-linear activation function like LeakyReLU [50] and

LU [51] . P ∈ R 

F (l) ×F (l+1) 
is the weight matrix between the ( l )th and

(l + 1) th layer. Eq. (3) can be written in a matrix form as 

 

(l+1) = σ ( HW H 

T X 

(l) P ) , (4)

here X 

(l) ∈ R 

N×F (l) 
and X 

(l+1) ∈ R 

N×F (l+1) 
are the input of the ( l )th

nd (l + 1) th layer, respectively. 

However, HWH 

T does not hold a constrained spectral radius,

hich means that the scale of X 

( l ) will be possibly changed. In

ptimizing a neural network, stacking multiple hypergraph convo-

utional layers like Eq. (4) can then lead to numerical instabilities

nd increase the risk of exploding/vanishing gradients. Therefore,

 proper normalization is necessary. Thus, we impose a symmetric

ormalization and arrive at our final formulation 

 

(l+1) = σ (D 

−1 / 2 HW B 

−1 H 

T D 

−1 / 2 X 

(l) P ) . (5)

ere, we recall that D and B are the degree matrices of the ver-

ex and hyperedge in a hypergraph, respectively. It is easy to prove

hat the maximum eigenvalue of D 

−1 / 2 HW B 

−1 H 

T D 

−1 / 2 is no larger

han 1, which stems from a fact [10] that I − D 

−1 / 2 HW B 

−1 H 

T D 

−1 / 2 

s a positive semi-definite matrix. I is an identity matrix of an ap-

ropriate size. 

Alternatively, a row-normalization is also viable as 

 

(l+1) = σ (D 

−1 HW B 

−1 H 

T X 

(l) P ) , (6)

hich enjoys similar mathematical properties as Eq. (5) , except

hat the propagation is directional and asymmetric in this case. 

As X 

(l+1) is differentiable with respect to X 

( l ) and P , we can

se hypergraph convolution in model training and optimize it via

radient descent. 

.3. Hypergraph attention 

Hypergraph convolution has a sort of innate attentional mech-

nism [31,39] . As we can find from Eqs. (5) and (6) , the transition

robability between vertices is non-binary, which means that for

 given vertex, the afferent and efferent information flow is ex-

licitly assigned a diverse magnitude of importance. However, such

n attentional mechanism is not learnable and trainable after the

raph structure (the incidence matrix H ) is given. The goal of hy-

ergraph attention is to learn a dynamic incidence matrix, thereby

 dynamic transition matrix that can better reveal the intrinsic re-

ationship between vertices. 

One natural solution is to exert an attention learning module

n H . In this circumstance, instead of treating each vertex as be-

ng connected by a certain hyperedge or not, the attention module

resents a probabilistic model, which assigns non-binary and real

alues to measure the degree of connectivity. We expect that the

robabilistic model can learn more category-discriminative embed-

ings and the relationship between vertices can be more accurately

escribed. 
Nevertheless, hypergraph attention is only feasible when the

ertex set and the hyperedge set are from (or can be projected to)

he same homogeneous domain, since only in this case, the simi-

arities between vertices and hyperedges are directly comparable.

n practice, it depends on how the hypergraph G is constructed.

or example, Huang et al. [52] apply hypergraph learning to im-

ge retrieval where each vertex collects its k-nearest neighbors to

orm a hyperedge, as also the way of constructing hypergraphs in

ur experiments. When the vertex set and the edge set are com-

arable, we define the procedure of hypergraph attention inspired

y Velickovic et al. [31] . For a given vertex x i and its associated

yperedge x j , the attentional score is 

 i j = 

exp 

(
σ ( sim (x i P , x j P )) 

)∑ 

k ∈N i exp ( σ ( sim (x i P , x k P )) ) 
, (7) 

here σ ( · ) is a non-linear activation function. N i is the neighbor-

ood set of x i , which can be pre-accessed on some benchmarks,

uch as the Cora and Citeseer datasets [53] . sim( · ) is a similarity

unction that computes the pairwise similarity between two ver-

ices, defined as 

im (x i , x j ) = a T [ x i ‖ x j ] . (8)

ere [, ‖ , ] denotes concatenation and a is a weight vector used to

utput a scalar similarity value. 

With the incidence matrix H enriched by an attention module,

ne can also follow Eqs. (5) and (6) to learn the intermediate em-

edding of vertices layer-by-layer. Note that hypergraph attention

lso propagates gradients to H in addition to X 

( l ) and P . 

In some applications, the vertex set and the hyperedge set are

rom two heterogeneous domains. For instance, Zhou et al. [48] as-

ume that attributes are hyperedges to connect objects like news-

aper or text. Then, it is problematic to directly learn an attention

odule over the incidence matrix H . We leave this issue for future

ork. 

.4. Summary and remarks 

The pipeline of the proposed hypergraph convolution and hy-

ergraph attention is illustrated in Fig. 2 . Both two operators can

e inserted into most variants of graph neural networks when non-

airwise relationships are observed, and used for model training. 

As the only difference between hypergraph convolution and hy-

ergraph attention is an optional attention module on the inci-

ence matrix H , below we take hypergraph convolution as a rep-

esentative to further analyze the properties of our methods. Note

hat the analyses also hold for hypergraph attention. 

Relationship with Graph Convolution. We prove that graph

onvolution [22] is a special case of hypergraph convolution math-

matically. 

Let A ∈ R 

N×N be the adjacency matrix used in graph convolu-

ion. When each edge only links two vertices in a hypergraph, the

ertex degree matrix B = 2 I . Assuming equal weights for all the hy-

eredges ( i.e. , W = I ), we have an interesting observation of hyper-

raph convolution. Based on Eq. (5) , the definition of hypergraph

onvolution then becomes 

 

(l+1) = σ ( 
1 

2 

D 

−1 / 2 HH 

T D 

−1 / 2 X 

(l) P ) , 

= σ
(

1 

2 

D 

−1 / 2 (A + D ) D 

−1 / 2 X 

(l) P 

)
= σ

(
1 

2 

(I + D 

−1 / 2 AD 

−1 / 2 ) X 

(l) P 

)
= σ ( ̂  A X 

(l) P ) , (9) 

here ˆ A = 1 / 2 ̃  A and ̃

 A = I + D 

−1 / 2 AD 

−1 / 2 . As we can see, Eq. (9) is

xactly equivalent to the definition of graph convolution (see
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Fig. 2. Schematic illustration of hypergraph convolution with 5 vertices and 2 hyperedges. With an optional attention mechanism, hypergraph convolution upgrades to 

hypergraph attention. 
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Eq. (9) in [22] ). Note that ˜ A has eigenvalues in the range [0,2]. To

avoid scale changes, [22] have suggested a re-normalization trick,

that is 

ˆ A = ̃

 D 

−1 / 2 ˜ A ̃

 D 

−1 / 2 . (10)

In the specific case of hypergraph convolution, we are using a sim-

plified solution, that is dividing ̃  A by 2. 

With GCN as a bridge and springboard to the family of graph

neural networks, it then becomes feasible to build connections

with other frameworks, e.g. , MoNet [40] , and develop the higher-

order counterparts of those variants to deal with non-pairwise re-

lationships. 

Implementation in Practice and Complexity Analysis. The im-

plementation of hypergraph convolution appears sophisticated as 6

matrices are multiplied for symmetric convolution (see Eq. (5) ) and

5 matrices are multiplied for asymmetric convolution (see Eq. (6) ).

However, it should be mentioned that D , W and B are all diago-

nal matrices, which makes it possible to efficiently implement it in

commonly used deep learning platforms. 

For asymmetric convolution, we have from Eq. (6) that 

D 

−1 HW B 

−1 H 

T = (D 

−1 H W )(HB 

−1 ) T , (11)

where D 

−1 HW performs L 1 normalization of HW over rows and

HB 

−1 performs L 1 normalization of H over columns. In space-

saving applications where matrix-form variables are allowed, nor-

malization can be simply done using standard built-in functions in

public neural network packages. 

In case of space-consuming applications, one can readily imple-

ment a sparse version of hypergraph convolution as well. Since H

is usually a sparse matrix, Eq. (11) does not necessarily decrease

the sparsity too much. Hence, we can conduct normalization only

on non-zero indices of H , resulting in a sparse transition matrix. 

Mathematically, if we implement Eq. (11) directly via matrix

multiplications, the time complexity would be upper bounded by

O( 2 N 

2 M + 2 M 

2 N). In comparison, if implemented via normaliza-

tion, the time complexity is significantly decreased. In more de-

tail, D 

−1 HW requires 2 NM operations, HB 

−1 requires NM opera-

tions, and the matrix multiplication between them requires N 

2 M

operations. As a result, the total operations required are bounded

by O( 3 N M + N 

2 M). It can be envisioned that the speed can be even

faster if the matrix sparsity is considered. Because of the well-

optimized normalization functions in commonly used computing

platforms ( e.g., torch.nn.functional.normalize in Pytorch

or sklearn.preprocessing.normalize in scikit-learn), it

only takes 1.8ms to fulfill one forward pass on the Cora dataset

using a server with an Intel(R) Core(TM) i7-5960X CPU (3.00GHz)

and an NVIDIA GeForce RTX 2080 Ti GPU. 
Symmetric hypergraph convolution defined in Eq. (5) can be

mplemented similarly, with a minor difference in normalization

sing the vertex degree matrix D . 

Skip Connection. Hypergraph convolution can be integrated

ith skip connection [2] as 

 

(l+1) 
k 

= HConv 
(
X 

(l) , H k , P k 

)
+ X 

(l) , (12)

here HConv( · ) represents the hypergraph convolution operator

efined in Eq. (5) (or Eq. (6) ). Some similar structures ( e.g. , high-

ay structure [54] adopted in Highway-GCN [55] ) can be also ap-

lied. 

It has been demonstrated [22] that deep graph models cannot

mprove the performance even with skip connections since the re-

eptive field grows exponentially with respect to the model depth.

n the experiments, we will verify the compatibility of the pro-

osed operators with skip connections in model training. 

Multi-head. To stabilize the learning process and improve the

epresentative power of networks, multi-head ( a.k.a. multi-branch)

rchitecture is suggested in relevant works, e.g. , [31,56,57] . hyper-

raph convolution can be also extended in that way, as 

 

(l+1) 
k 

= HConv 
(
X 

(l) , H k , P k 

)
, 

 

(l+1) = Aggregate 
(
X 

(l+1) 
k 

)K 

k =1 
, (13)

here Aggregate( · ) is a certain aggregation like concatenation or

verage pooling. H k and P k are the incidence matrix and weight

atrix corresponding to the k th head, respectively. Note that only

n hypergraph attention, H k is different over different heads. 

. Experiments 

In this section, we evaluate the proposed hypergraph convolu-

ion and hypergraph attention in the task of semi-supervised node

lassification. 

Following [22,31] , we first employ three citation network

atasets, including the Cora, Citeseer and Pubmed datasets [53] , to

ake a fair comparison with previous methods. 

• The Cora dataset contains 2,708 scientific publications divided

into 7 categories. There are 5,429 edges in total, with each edge

being a citation link from one article to another. Each publica-

tion is described by a binary bag-of-word representation, where

0 (or 1) indicates the absence (or presence) of the correspond-

ing word from the dictionary. The dictionary consists of 1,433

unique words. 
• Like the Cora dataset, the Citeseer dataset contains 3,327 scien-

tific publications, divided into 6 categories and linked by 4,732

edges. Each publication is described by a binary bag-of-word

representation of 3,703 dimensions. 
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Table 1 

Overview of data statistics. 

Dataset #Nodes #Edges #Features #Classes 

Cora 2708 5429 1433 7 

Citeseer 3327 4732 3703 6 

Pubmed 19,717 44,338 500 3 

20-newsgroup 16,242 - 100 4 
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Table 2 

The comparison with baseline methods in terms of classification 

accuracy (%). “Hyper-Conv.” denotes hypergraph convolution and 

“Hyper-Atten.” denotes hypergraph attention. 

Method Cora dataset Citeseer dataset 

GCN 

∗ 81.80 70.29 

Hyper-Conv. ( ours ) 82.19 70.35 

GCN 

∗+ Hyper-Conv. ( ours ) 82.63 70.00 

GAT ∗ 82.43 70.02 

Hyper-Atten. ( ours ) 82.61 70.88 

GAT ∗+ Hyper-Atten. ( ours ) 82.74 70.12 
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• The Pubmed dataset is comprised of 19,717 scientific publica-

tions divided into 3 classes. The citation network has 44,338

links. Each publication is described by a vectorial representa-

tion using Term Frequency-Inverse Document Frequency (TF-

IDF), drawn from a dictionary with 500 terms. 

Then as per [48] , a modified version of the 20-newsgroup

ataset 1 with binary occurrence values for 100 words is used 

or text categorization. It consists of 16,242 articles divided into

 groups, with the sizes being 4605, 3519, 2657 and 5461 re-

pectively. Each word naturally connects multiple postings, which

akes this dataset more suitable for the use of a hypergraph. In

he meantime, it means the graph used is generated using the

ame resources (words) as the node features. Table 1 presents an

verview of the dataset statistics. 

As for the training-testing data split, we adopt the setting used

n [58] . In each dataset, 20 nodes per category are used for model

raining. Another 500 nodes are used for validation purposes and

0 0 0 nodes are used for performance evaluation. 

.1. Experiments on citation networks 

.1.1. Hypergraph construction 

Most existing methods interpret the citation network as the ad-

acency matrix of a simple graph by a certain kind of normaliza-

ion, e.g. , [22] . By doing so, these methods working on a simple

raph aim to define the scheme of message passing if one article

s cited by another article. 

In this work, we construct a higher-order graph to enable hy-

ergraph convolution and hypergraph attention. The whole proce-

ure is divided into three steps: 1) all the articles constitute the

ertex set of the hypergraph; 2) each article is taken as a cen-

roid and forms a hyperedge to connect those articles which have

itation links to it (either citing it or being cited); 3) the hyper-

dges are equally weighted for simplicity, but one can set non-

qual weights to encode a prior knowledge if existing in other ap-

lications. Compared with existing methods, our work focuses on

he message passing if two articles are both cited by a third article.

.1.2. Implementation details 

We implement the proposed hypergraph convolution and hy-

ergraph attention using Pytorch 

2 . As for the parameter setting

nd network structure, we closely follow [31] without a carefully

arameter tuning and model design. 

In more detail, a two-layer graph model is constructed. The

rst layer consists of 8 branches of the same topology, and each

ranch generates an 8-dimensional hidden representation. The sec-

nd layer, used for classification, is a single-branch topology and

enerates C -dimensional feature ( C is the number of classes). Each

ayer is followed by a nonlinearity activation and here we use Ex-

onential Linear Unit (ELU) [51] . L 2 regularization is applied to the

arameters of network with λ = 0 . 0 0 03 on the Cora and Citeseer

atasets and λ = 0 . 001 on the Pubmed dataset, respectively. 
1 https://cs.nyu.edu/ ∼roweis/data.html . 
2 Included in the PyTorch Geometric Library: https://github.com/rusty1s/pytorch _ 

eometric . 

i  

O  

c  

d  
Specifically in hypergraph attention, dropout with a rate of 0.6

s applied to both inputs of each layer and the attention transition

atrix. As for the computation of the attention incidence matrix H

n Eq. (7) , we employ a linear transform as the similarity function

im( · ), followed by LeakyReLU nonlinearity [50] with the negative

nput slope set to 0.2. On the Pubmed dataset, we do not use 8

utput attention heads for classification to ensure the consistency

f network structures. 

We train the model by minimizing the cross-entropy loss on the

raining nodes using the Adam [59] optimizer with a learning rate

f 0.005 on the Cora and Citeseer datasets and 0.01 on the Pubmed

ataset, respectively. An early stop strategy is adopted on the vali-

ation loss with a patience of 100 epochs. For all the experiments,

e report the mean classification accuracy and standard deviation

f 100 trials on the testing dataset. 

.1.3. Analysis 

We first analyze the properties of hypergraph convolution and

ypergraph attention with a series of ablation studies. The com-

arison is primarily done with Graph Convolution Network (GCN)

22] and Graph Attention Network (GAT) [31] , which are two latest

epresentatives of graph neural networks that have close relation-

hips with our methods. 

For a fair comparison, we reproduce the performance of GCN

nd GAT with exactly the same experimental setting aforemen-

ioned. Thus, we denote them by GCN 

∗ and GAT ∗ in the fol-

owing. Moreover, we employ the same normalization strategy as

CN, i.e. , symmetric normalization in Eq. (5) for hypergraph con-

olution, and the same strategy as GAT, i.e. , asymmetric normal-

zation in Eq. (6) for hypergraph attention. They are denoted by

yper-Conv. and Hyper-Atten. for short, respectively. 

We modify the model of GAT to implement GCN by remov-

ng the attention module and directly feeding the graph adjacency

atrix with the normalization trick proposed in GCN. Two note-

orthy comments are made here. First, although the architecture

f GCN 

∗ differs from the original one, the principle of performing

raph convolution is the same. Second, directly feeding the graph

djacency matrix is not equivalent to the constant attention de-

cribed in GAT as normalization is used in our case. In GAT, the

onstant attention weight is set to 1 without normalization. 

Comparisons with Baselines. The comparison with baseline

ethods is given in Table 2 . 

We first observe that hypergraph convolution and hypergraph

ttention, as non-pairwise models , consistently outperform its

orresponding pairwise models , i.e. , graph convolution network

GCN 

∗) and graph attention network (GAT ∗). For example on the

ora dataset, GCN 

∗ achieves an accuracy of 81.80 and hypergraph

onvolution reports an accuracy of 82.19. We conduct onesided

wo-sample t -test and obtain p-value equal to 0.016, indicating the

mprovement is statistically significant at the 5% significance level.

n the Citeseer dataset, hypergraph attention achieves a classifi-

ation accuracy of 70.88, an improvement of 0.86 over GAT ∗. This

emonstrates the benefit of considering higher-order models in

https://cs.nyu.edu/~roweis/data.html
https://github.com/rusty1s/pytorch_geometric
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Table 3 

The compatibility of skip connection in terms of accuracy (%). 

Method λ= 3e-4 λ= 1e-3 

Cora Citeseer Cora Citeseer 

GCN 

∗ 79.96 69.24 80.52 70.15 

Hyper-Conv. ( ours ) 82.22 69.46 82.66 70.83 

GAT ∗ 80.84 68.96 81.33 69.69 

Hyper-Atten. ( ours ) 81.85 70.37 82.34 71.19 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4 

The influence of the length of hidden representation on Cora. 

Method The length of hidden representation 

2 4 8 16 24 36 

GCN 

∗ 65.9 79.6 82.0 81.9 82.0 81.9 

Hyper-Conv. 69.7 80.4 82.0 82.1 82.1 82.1 
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graph neural networks to exploit non-pairwise relationships and

local clustering structure parameterized by hyperedges. 

Compared with hypergraph convolution, hypergraph attention

adopts a data-driven learning module to dynamically estimate the

strength of each link associated with vertices and hyperedges.

Thus, the attention mechanism helps hypergraph convolution em-

bed the non-pairwise relationships between objects more accu-

rately. As presented in Table 2 , the performance improvements

brought by hypergraph attention are 0.42 and 0.53 over hyper-

graph convolution on the Cora and Citeseer datasets, respectively. 

Although non-pairwise models proposed in this work have

achieved improvements over pairwise models, one cannot hastily

deduce that non-pairwise models are more capable in learning ro-

bust deep embeddings under all circumstances. A rational claim is

that they are suitable for different applications as real data may

convey different structures. Some graph-structured data can be

only modeled in a simple graph, some can be only modeled in

a higher-order graph and others are suitable for both. Neverthe-

less, as analyzed in Section 3.4 , our method presents a more flex-

ible operator in graph neural networks, where graph convolution

and graph attention are special cases of non-pairwise models with

guaranteed mathematical properties and performance. 

One may be also interested in another question, i.e. , does it

bring performance improvements if using hypergraph convolution

(or attention) in conjunction with graph convolution (or atten-

tion)? We further investigate this by averaging the transition prob-

ability learned by non-pairwise models and pairwise models with

equal weights, and report the results in Table 2 . As it shows, a

positive synergy is only observed on the Cora dataset, where the

best results of convolution operator and attention operator are im-

proved to 82.63 and 82.74, respectively. By contrast, our methods

encounter a slight performance decrease on the Citeseer dataset.

From another perspective, it also supports our above claim that

different data may fit different structural graph models. 

Analysis of Skip Connection. We study the influence of skip

connection [2] by adding an identity mapping in the first hyper-

graph convolution layer. We report in Table 3 two settings of the

weight decay, i.e. , λ= 3e-4 (default setting) and λ= 1e-3. 

As it shows, both GCN 

∗ and GAT ∗ report lower recognition rates

when integrated with skip connection compared with those re-

ported in Table 2 . In comparison, the proposed non-pairwise mod-

els, especially hypergraph convolution, seem to benefit from skip

connection. For instance, the best-performing trial of hypergraph

convolution yields 82.66 on the Cora dataset, better than 82.19

achieved without skip connection, and yields 70.83 on the Citeseer

dataset, better than 70.35 achieved without skip connection. 

Such experimental results encourage us to further train a much

deeper model implemented with hypergraph convolution or hyper-

graph attention (say up to 10 layers). However, we also witness a

performance deterioration either with or without skip connection.

This reveals that a better training paradigm and architecture are

still urgently required for graph neural networks. 

Analysis of Hidden Representation. Table 4 presents the per-

formance comparison between GCN 

∗ and hypergraph convolution
ith an increasing length of the hidden representation. The num-

er of heads is set to 1. 

It is easy to find that the performance keeps increasing with

n increase of the length of the hidden representation, then peaks

hen the length is 16. Moreover, hypergraph convolution consis-

ently beats GCN 

∗ with a variety of feature dimensions. As the

nly difference between GCN 

∗ and hypergraph convolution is the

sed graph structure, the performance gain purely comes from a

ore robust way of establishing the relationships between objects.

t firmly demonstrates the ability of our methods in graph knowl-

dge embedding. 

.1.4. Comparison with state-of-the-art 

We compare our method with the state-of-the-art algorithms,

hich have followed the experimental setting in [58] and reported

lassification accuracies on the Cora, Citeseer and Pubmed datasets.

ote that the results are directly quoted from the original pa-

ers, instead of being re-implemented in this work. Besides GCN

nd GAT, the selected algorithms also include Manifold Regular-

zation [60] , Semi-supervised Embedding [61] , Label Propagation

62] , DeepWalk [63] , Iterative Classification Algorithm [64] , Plan-

toid [58] , Chebyshev [21] , MoNet [40] , and Variance Reduction

33] . 

As presented in Table 5 , our method achieves the second best

erformance on the Cora and Citeseer datasets, which is slightly

nferior to GAT [31] by 0.3 and 1.3, respectively. The performance

ap is attributed to multiple factors, such as the difference in

eep learning platforms and better parameter tuning. As shown in

ection 4.1.3 , thorough experimental comparisons under the same

etting have demonstrated the benefit of learning deep embed-

ings using the proposed non-pairwise models. Nevertheless, we

mphasize again that pairwise and non-pairwise models have dif-

erent application scenarios, and existing variants of graph neural

etworks can be easily extended to their non-pairwise counter-

arts with the proposed two operators. 

On the Pubmed dataset, hypergraph attention reports a classifi-

ation accuracy of 78.4, better than 78.1 achieved by GAT ∗. As de-

cribed in Section 4.1.2 , the original implementation of GAT adopts

 output attention heads while only 1 is used in GAT ∗ to ensure

he consistency of the model architecture. Even though, hyper-

raph attention also achieves a comparable performance with the

tate-of-the-art methods. 

.2. Experiments on text categorization 

In the experiments presented in Section 4.1 , we assume that a

re-defined graph structure, independent from the input features,

s given. For example, the citation links presented in the citation

etwork are irrelevant to the feature embeddings of articles. Here,

e show the scenario where graph structure and input features are

oth generated using the same resources, i.e. , attributes, which is

ore suitable for the use of a hypergraph. 

As described above, the 20-newsgroup dataset adopted in our

ork does not have a pre-defined graph structure. To enable a di-

ect comparison between GCN and hypergraph convolution feasi-

le, we first need to construct the graph. For the graph construc-

ion of GCN, we connect two vertices if there is at least one shared
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Table 5 

Comparison with the state-of-the-art methods in terms of classification accuracy (%). 

The best and second best results are marked in bold and italic, respectively. 

Method Cora Citeseer Pubmed 

Multilayer Perceptron 55.1 46.5 71.4 

Manifold Regularization [60] 59.5 60.1 70.7 

Semi-supervised Embedding [61] 59.0 59.6 71.7 

Label Propagation [62] 68.0 45.3 63.0 

DeepWalk [63] 67.2 43.2 65.3 

Iterative Classification Algorithm [64] 75.1 69.1 73.9 

Planetoid [58] 75.7 64.7 77.2 

Chebyshev [21] 81.2 69.8 74.4 

Graph Convolutional Network [22] 81.5 70.3 79.0 

Feng et al. [49] 81.6 - - 

MoNet [40] 81.7 - 78.8 

Variance Reduction [33] 82.0 70.9 79.0 

Graph Attention Network [31] 83.0 72.5 79.0 

Ours 82.7 ± 0.3 71.2 ± 0.4 78.4 ± 0.3 
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ord. In this case, we do not necessarily distinguish how many

ords they share. However, it is quite likely that more than two

rticles share the same word, thus naturally forming a hypergraph

tructure. Hence, we use words directly as hyperedges to connect

rticles for evaluating hypergraph convolution. 

As for the implementation, we use the same model architecture,

he same training strategy, the same loss function and the same

et of hyper-parameters as those in Section 4.1 . That means, ex-

ept for the way of graph construction, all the rest settings remain

he same. Without bells and whistles, our hypergraph convolution

eports an accuracy of 61.7 while GCN reports an accuracy of 57.0.

he performance gain 4.7 solely comes from a better way of mod-

ling the occurrence of words, which suggests the capability of our

ethod in handling non-pairwise structures. 

. Conclusion 

In this work, we have contributed two end-to-end trainable op-

rators to the family of graph neural networks, i.e. , hypergraph

onvolution and hypergraph attention. While most variants of

raph neural networks assume pairwise relationships of objects of

nterest, the proposed operators handle non-pairwise relationships

odeled in a high-order hypergraph. We theoretically demonstrate

hat some recent representative works, e.g. , graph convolution net-

ork [22] and graph attention network [31] , are special cases of

ur methods. Hence, our proposed hypergraph convolution and hy-

ergraph attention are more flexible in dealing with arbitrary or-

ers of relationships and diverse applications, where both pair-

ise and non-pairwise formulations are likely to be involved. Thor-

ugh experimental results with semi-supervised node classification

emonstrate the efficacy of the proposed methods. 

In real applications, the key to applying our method is to

bstract the non-pairwise relationships (for defining hyperedges)

rom the data. For example, i) in retrieval systems, a keyword, be-

ng as a hyperedge, could connect more than two webpages; ii) in

ollaborative filtering, a product tag, being as a hyperedge, could

onnect more than two users; iii) in social networks, two indi-

iduals could be connected by their direct friendship, which is a

airwise relationship in a vanilla graph. However, if a post is com-

ented on by multiple individuals, we could use the post as a

yperedge to connect those individuals. Besides, our method does

ot distinguish undirected hypergraphs from directed hypergraphs.

hat means it is capable of handling both cases since the incident

tructure can be determined similarly. The last remark is about the

calability of our method. We have presented how to efficiently

mplement our method in Section 3.4 to accommodate popular

eep learning platforms. When dealing with billion or trillion scale
ata, one may resort to distributed systems like MapReduce for the

ake of commercial use. 

There are still some challenging directions that can be further

nvestigated. Some of them are inherited from the limitation of

raph neural networks, such as training substantially deeper mod-

ls with more than a hundred of layers [2] , handling dynamic

tructures [14,15] , batch-wise model training, etc . Meanwhile, some

ssues are directly related to the proposed methods in high-order

earning. For example, although hyperedges are equally weighted

n our experiments, it is promising to exploit a proper weight

echanism when extra knowledge of data distributions is accessi-

le, and even, adopt a learnable module in a neural network then

ptimize the weight with gradient descent. The current implemen-

ation of hypergraph attention cannot be executed when the vertex

et and the hyperedge set are from two heterogeneous domains.

ne possible solution is to learn a joint embedding to project the

ertex features and edge features [65,66] in a shared latent space,

hich requires further exploration. 

Moreover, it is also interesting to plug hypergraph convolu-

ion and hypergraph attention into other variants of graph neu-

al network, e.g. , MoNet [40] , GraphSAGE [6] and GCPN [67] , and

pply them to other domain-specific applications, e.g. , 3D shape

nalysis [42,68,69] , visual search [70] , visual question answering

71] , chemistry [27,72] , knowledge graphs [73] , matrix factorization

74] and NP-hard problems [75] . 
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