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Abstract

Dense crowd counting aims to predict thousands of hu-

man instances from an image, by calculating integrals of a

density map over image pixels. Existing approaches mainly

suffer from the extreme density variations. Such density pat-

tern shift poses challenges even for multi-scale model en-

sembling. In this paper, we propose a simple yet effective

approach to tackle this problem. First, a patch-level density

map is extracted by a density estimation model and further

grouped into several density levels which are determined

over full datasets. Second, each patch density map is auto-

matically normalized by an online center learning strategy

with a multipolar center loss. Such a design can signifi-

cantly condense the density distribution into several clus-

ters, and enable that the density variance can be learned

by a single model. Extensive experiments demonstrate the

superiority of the proposed method. Our work outperforms

the state-of-the-art by 4.2%, 14.3%, 27.1% and 20.1% in

MAE, on the ShanghaiTech Part A, ShanghaiTech Part B,

UCF CC 50 and UCF-QNRF datasets, respectively.

1. Introduction

A robust crowd counting system is of significant value

in many real-world applications such as video surveillance,

security alerting, event planning, etc. In recent years, the

deep learning based approaches have been the mainstream

of crowd counting, thanks to the powerful representation

learning ability of convolutional neural networks (CNNs).

To estimate the count, predominant approaches adopt CNNs

to generate a density map, from which the count of instances

can be integrated over image pixels.

Although crowd counting has been extensively studied

by previous methods, handling the large density variations

which cause huge density pattern shift in crowd images is
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Figure 1. (a) Three examples from ShanghaiTech Part A dataset,

which show extreme density variations. (b) Comparison of Mean

Relative Error on four crowd counting datasets (the scale varia-

tions get larger from left to right) of different approaches. Results

show the robustness of the proposed approach to extreme scale

variations. [best viewed in color].

still an open issue. As illustrated in Fig. 1(a), the densi-

ties of crowd image patches can vary significantly, changing

from a bit sparse (e.g., ShanghaiTech Part B) to extremely

dense (e.g., UCF-QNRF). Such large density pattern shifts

usually bring grand challenges to density prediction by a

single CNN model, due to its fixed sizes of receptive fields.

Remarkable progress has been achieved by learning a den-

sity map through designing multi-scale architectures [23]

or aggregating multi-scale features [3, 33], which indicates

that the ability to cope with density variations is crucial

for crowd counting methods. Although density maps with

multiple scales can be generated and aggregated, it is still

hard to ensure robustness when the density variations get
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increased a lot. As shown in Fig. 1(b), most recent works

obtain a higher MRE1 on datasets with larger density vari-

ances, which indicates that the extreme density variations

and pattern shifts in crowd counting remain a huge chal-

lenge.

In this paper, we propose a simple yet effective method to

mitigate the problem caused by extreme density variations.

The core idea is learning to scale image patches and to facil-

itate the density distribution condensing to several clusters,

and thus the density variances can be reduced. The scale

factor of each image patch can be automatically learned dur-

ing training, with the supervision of a multipolar center loss

(MPCL). More specifically, all the patches at each density

level are optimized to approach a density center, which can

be updated by online calculating a mean value for each den-

sity level.

In particular, the proposed framework consists of two

closely-related steps. First, given an image, an initial den-

sity map is generated by our designed Scale Preserving Net-

work (SPN). After that, each density map is divided into

K ×K patches, and all the dense patch-level density maps

are further evenly divided into G groups, according to their

density levels. Second, each patch is scaled by a learned

scale factor, and thus the density of this patch can converge

to a center of its density level. The final density map for the

input image is obtained by merging the K ×K patch-level

density maps.

Experiments are conducted on several popular

benchmark datasets, including ShanghaiTech [33],

UCF CC 50 [9], and UCF-QNRF [11]. Extensive evalua-

tions demonstrate superior performance over the prior arts.

Moreover, the cross dataset validation on these datasets fur-

ther demonstrates that the proposed method has a powerful

transferability. In summary, the main contributions in this

paper are two-fold:

- We propose a Learning to Scale Module (L2SM) to

solve the density variation issue in crowd counting.

With L2SM, different regions can be automatically

scaled so that they have similar densities. In conse-

quence, the quality of the density maps is significantly

improved. L2SM is end-to-end trainable when adding

it into a CNN model for density estimation.

- The proposed L2SM added into SPN outperforms

state-of-the-art methods on three widely-adopted chal-

lenging datasets, demonstrating its effectiveness in

handling density variations. Furthermore, L2SM also

has a good transferability under cross dataset valida-

tion on different datasets, showing the generalizability

of the proposed method.

1MRE is calculated by MAE/P, where MAE denotes the standard

Mean Average Error and P is the average count of a dataset

2. Related Work

Crowd counting has attracted much attention in com-

puter vision. Early methods frame the counting problem

as a detection task [7, 29] that explicitly detects individual

heads, which has major difficulty in occlusion and dense

areas. The regression-based methods [4, 6, 8, 10] greatly

improve the counting performance on dense areas via dif-

ferent regression functions such as Gaussian process, ridge

regression, and random forest regression. Recently, with the

development of deep learning, the mainstream crowd count-

ing methods switch to CNN-based methods [21, 32, 2, 33,

31, 5, 18]. These CNN-based methods address the crowd

counting via regressing density map representations [14],

and achieve higher accuracy and transferability than the

classical methods. Recent methods mainly focus on two

challenging aspects faced by current CNN-based methods:

huge scale variation and severe over-fitting.

Methods addressing huge scale variation. Multi-scale

is a difficult problem for many vision tasks including crowd

counting. It is difficult to accurately count the small heads

in dense areas. There are many methods attempting to

handle huge scale variation. The existing methods can be

roughly divided into two categories: methods that explic-

itly rely on scale information and methods that implicitly

cope with multi-scale.

1) Some methods explicitly make use of scale informa-

tion for crowd counting. For instance, Zhang et al. [32] and

Onoro et al. [19] adopt CNNs with provided geometric or

perspective information. Yet, this scale related information

is not always readily available. Sindagi et al. [28] use net-

works to estimate the density degree for the corresponding

whole and partial region based on manually setting scale de-

grees, then fuse them as context information. Sam et al. [23]

leverage the scale information to design different networks

for dividing and counting. To overcome the difficulty in

manually setting the scale degree, Sam et al. [1] design an

incrementally growing CNN to deal with areas of different

density degrees without involving any handcraft steps.

2) Some other works aim to implicitly cope with the

multi-scale problem. Zhang et al. [33] and Cao et al. [3]

propose to build a multi-column CNN to extract multi-scale

features and fuse them together for density map estimation.

Different from multi-scale feature fusion, Liu et al. [17] at-

tempt to encode the scale of the contextual information re-

quired to accurately predict crowd density. In [15], Li et

al. propose to increment the receptive field size in CNN to

better leverage multi-scale information. In addition to these

specific network designs for implicitly handling the multi-

scale problem, Shen et al. [24] introduce an ad hoc term in

the training loss function in order to pursue the cross-scale

consistency. In [11], Idrees et al. propose to adopt vari-

ant ground-truth density map representation with Gaussian

kernels of different sizes to better deal with density map es-
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Figure 2. A rational human behavior. For a given image, we are

prone to first count in the regions of large heads (e.g., region on the

bottom of image), then zoom in the regions of dense small heads

for precise counting (see for example the region in the middle and

its zoomed version on top right).

timation in areas of different density levels.

Methods alleviating severe over-fitting. It is well-

known that deep CNNs [13, 26] usually struggle with the

over-fitting problem on small datasets. Current CNN-based

crowd counting methods also face this challenge due to the

small size and limited variety of existing datasets, lead-

ing to weak performance and transferability. To over-

come the over-fitting, Liu et al. [18] propose a learning-to-

rank framework to leverage abundantly available unlabeled

crowd images and a self-learning strategy. Shi et al. [25]

build a set of decorrelated regressors with reasonable gen-

eralization capabilities through managing their intrinsic di-

versities to avoid severe over-fitting.

Though many methods have been proposed to tackle the

large scale and density variation issue, this problem still re-

mains hard for crowd counting. Different from previous

methods [33, 23, 27, 1, 3, 16], we mimic a rational human

behavior in crowd counting through learning to scale dense

region counting. We compute the scale ratios with a novel

use of multipolar center loss [30] to explicitly bring all the

regions of significantly varied density to multiple similar

density levels. This results in a robust density estimation on

dense regions and appealing transferability.

3. Method

3.1. Overview

The mainstream crowd counting methods model the

problem as density map regression using CNNs. For a given

image, the ground-truth density map D is given by spread-

ing binary head locations to nearby regions with Gaussian

kernels. For sparse regions, the ground-truth density only

depends on a specific person, resulting in regular Gaus-

sian blobs. For dense regions, multiple crowded heads may

spread to the same nearby pixel, yielding high ground-truth

densities with very different density patterns compared with

sparse regions. These density pattern shifts make it difficult

to accurately predict the density maps for both dense and

sparse regions in the same way.

To improve the counting accuracy, we aim to tackle the

problem of pattern shift caused by large density variations

and refine the prediction for highly dense regions. Specifi-

cally, the proposed method mimics a rational behavior when

humans count crowds. For a given crowd image, we are

prone to begin with dividing the image into partitions of dif-

ferent crowding levels before attempting to count the peo-

ple. For sparse regions of large heads, it is easy to directly

count the people on the original region. Whereas, for dense

regions composed of crowded small heads, we need to zoom

in the region for more accurate counting. An example of

this counting behavior is depicted in Fig. 2.

We propose a network to mimic such human behavior

for crowd counting. The overall pipeline is depicted in

Fig. 3, consisting of two modules: 1) Scale preserving net-

work (SPN) presented in Sec. 3.2. We leverage multi-scale

feature fusion to generate an initial density map prediction,

which provides an accurate prediction on sparse regions and

indicates the density distribution over the image; 2) Learn-

ing to scale module (L2SM) detailed in Sec. 3.3. We divide

the image into K ×K non-overlapping regions, and select

some dense regions (based on the initial density estimation)

to re-predict the density map. Specifically, we leverage SPN

to compute a scaling factor for each selected dense region,

and scale the ground-truth density map by changing the dis-

tance between blobs and keeping the same peaks. The den-

sity re-prediction for the selected regions is then performed

on the scaled features. The key to this re-prediction pro-

cess lies in computing appropriate scaling factors. For that,

we adopt the center loss to centralize the density distribu-

tions into multipolar centers, alleviating the density pattern

shift issue and thus improving the prediction accuracy. The

whole network is end-to-end trainable and the training ob-

jective is presented in Sec. 3.4.

3.2. Scale Preserving Network

We follow the mainstream crowd counting methods by

regressing density maps. In detail, we use geometry-

adaptive kernels to generate ground-truth density maps in

highly congested scenes. For a given image containing P
person, the ground-truth annotation can be represented via

a delta function on each pixel p: H(p) =
∑P

i=1
δ(p− pi),

where pi is the annotated location of i-th person. The den-

sity map D on each pixel p is then generated by convolving

H(p) with a Gaussian kernel G: D(p) =
∑P

i=1
δ(p− pi) ∗

Gσi
, where the Gaussian kernel σi is a spread parameter.

We develop a CNN to regress the density map D. For a

fair comparison with most methods, we adopt VGG16 [26]

as the backbone network. We discard the pooling layer be-

tween stage4 and stage5, as well as the last pooling layer

and the fully connected layers that follow to preserve ac-

curate spatial information. It is well-known that deep lay-

ers in CNN encode more semantic and high-level informa-

tion, and shallow layers provide more precise localization

8384



16 16
8 8

4 4
2 2

1 1

Initial density map

CONV+POOL

Feature Pyramid

L2S

Re-predicted density map

Sampler

Scale factor map
C

N
N

Selected Features Scaled features

…

…

M
PC

L

C
O

N
V

…

…

…..
.

K

K …

Re-prediction

…

l d

K x K

UP/DOWN SAMPLING

Figure 3. Overall pipeline of the proposed method with two modules: 1) Scale Preserving Network (SPN) to generate an initial density

map D̂ from stacked feature fs, and 2) Learning to Scale Module (L2SM) that computes the scale ratios r for dense regions selected (based

on D̂) from K ×K non-overlapping divisions of image domain, and then re-predicts the density map D̂′ for selected dense regions from

scaled feature fb. We adopt multipolar center loss (MPCL) on relative density level reflected by D̂i/r
2

i for each region Ri to explicitly

centralize all the selected dense regions into multiple similar density levels. This alleviates the density pattern shift issue caused by the

large density variation between sparse and dense regions.

information. We extract features from different stages by

applying 3× 3 convolutions on the last layer of each stage.

Then we pool these features extracted from stage1 to stage5

into 16 × 16, 8 × 8, 4 × 4, 2 × 2, and 1 × 1, respectively.

This results in a pyramid structure. Each spatial unit in the

pooled feature indicates the density level, hence it maps to

the scale information of the underlying image. These scale

preserving features are then upsampled to the size of conv5

by bilinear interpolation and stacked together with features

in conv5 fb. We then feed the stacked feature fs to three

successive convolutions and one deconvolution layer for re-

gressing the density map D̂.

3.3. Learning to Scale Module

The initial density prediction is accurate on sparse re-

gions thanks to the regular individual Gaussian blobs, but

the prediction is less accurate on dense regions composed of

crowded heads lying very close to each other. As indicated

in Sec. 3.1, this triggers the pattern shift on the target den-

sity map. Following the rational human behavior in crowd

counting, we zoom in the dense regions for better count-

ing accuracy. In fact, on the zoomed version, the distance

between nearby heads is enlarged, which results in regular

individual Gaussian blobs of target density map, alleviating

the density pattern shift. Such density pattern modulating

facilitates the prediction. Inspired by this, we first evenly

divide the image domain into K × K (e.g., K = 4) non-

overlapping regions. We then select the dense regions based

on the average initial density Di =
∑

p∈Ri
D̂(p)/|Ri| of

each region Ri, where |Ri| denotes the area of region Ri.

We achieve this by learning to scale the selected dense

regions. We first leverage the scale preserving pyramid

features described in Sec. 3.2 to compute the scaling ra-

tio ri for each selected region Ri. In detail, we downsam-

ple/upsample the pooled features described in Sec. 3.2 to

K×K, and concatenate them together. This is followed by

a 1× 1 convolution to produce the scale factor map r. Each

value in this K × K map r represents the scaling ratio for

the underlying region.

Once having the scale factor map r, we scale the feature

fb on the selected regions accordingly through bilinear up-

sampling. Based on the scaled feature map corresponding

to each selected region Ri, we apply five successive convo-

lutions to re-predict the density map for scaled Ri. We then

resize the re-predicted density map to the original size of

Ri and multiply the density on each pixel by r2i to preserve

the same counting result. The initial prediction on selected

regions is replaced by the re-prediction of resized density

map.

To guide the density map re-prediction on the selected

regions, we also adjust the ground-truth density map for

each region accordingly. For each selected region Ri, in-

stead of directly scaling the ground-truth density map in the

same way as feature map scaling, we first scale the binary

head location map, and then recompute the ground-truth

density map D′

i for Ri by D′

i(p) =
∑Pi

m=1
δ(p− ri ∗ pm)∗

Gσm
(p), where Pi is the number of people in Ri. As

shown in Fig. 4, such ground-truth transformation for den-

sity map re-computation reduces the density pattern gap be-

tween sparse regions and dense regions, facilitating the den-

sity map re-prediction.

The main issue of this density map re-prediction by

learning to scale dense regions is to compute appropriate

scale ratios for the selected dense regions. Yet, there is no
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Figure 4. An example of ground-truth transformation for density

map re-computation by enlarging the distance between blobs while

keeping the original peaks, alleviating the density pattern shift be-

tween sparse and dense regions.

explicit target scale suggesting how much region Ri should

be zoomed ideally. We would like to have the estimated

average density Di approaching the ground-truth average

density on the i-th region. The relative density degree of re-

gion Ri could be well reflected by di = Di/r
2
i . Assuming

that we make the value of di for each region close to one of

the multiple learnable centers, then we centralize all the se-

lected regions to multiple similar density levels, alleviating

the large density pattern shift and thus improving the pre-

diction accuracy. This motivates us to resort to center loss

on di with multipolar centers. Put it simply, we attempt to

centralize all the selected regions into C centers following

their average density D acting as the unsupervised cluster-

ing.

Specifically, we extend the center loss to a multipolor

center loss (MPCL) to handle different density levels. We

first initialize the C centers with increasing random values

for more and more dense regions. Then for each center dc,

we follow the standard process of using center loss and up-

date the center for (t+ 1)-th iteration as

∆dc
t
=

∑nc

i=1
(dc

t
−

D
c

i

rc
i
×rc

i

)

1 + nc

, dc
t+1

= dc
t
−α·∆dc

t
, (1)

where nc refers to the number of regions, D
c

i refers to av-

erage density map, rci refers to scaling ratio for i-th region,

and α denotes the learning rate for updating each center,

respectively. The D
c

i will be centralized to the c-th cen-

ter in an image. During each iteration, we use the selected

N =
∑C

c=1
nc dense regions to compute the center loss

Lc with multiple centers and update network parameters as

well as the centers. The supervision on r using multipo-

lar center loss is the key to bring all the selected regions

to multiple similar density levels, leading to robust density

estimations.

3.4. Training objective

The whole network is end-to-end trainable, which in-

cludes three loss functions: 1) L2 loss for initial prediction

of density map LD given by LD =
∥

∥

∥
D − D̂

∥

∥

∥

2

; 2) L2 loss

for density map re-prediction on N =
∑C

c=1
nc selected

regions Lr given by Lr =
∑N

i=1

∥

∥

∥
D′

i − D̂′
i

∥

∥

∥

2

, where D̂′

i

denotes the re-predicted density map on the scaled selected

region Ri; 3) Multipolar center loss at relative density level

d for the selected regions Lc computed by

Lc =

C
∑

c=1

nc
∑

i=1

∥

∥

∥

∥

∥

D
c

i

rci × rci
− dc

∥

∥

∥

∥

∥

2

. (2)

The final loss function L for the whole network is the com-

bination of the above three losses given by

L = LD + λ1 × Lr + λ2 × Lc, (3)

where λ1 and λ2 are two hyperparameters. Note that we

optimize the loss function L in Eq. (3) to update not only

the overall network parameters but also the centers {dc}.

4. Experiments

4.1. Datasets and Evaluation Metrics

We conduct experiments on three widely adopted

benchmark datasets including ShanghaiTech [33],

UCF CC 50 [9], and UCF-QNRF [11] to demonstrate

the effectiveness of the proposed method. These three

datasets and the adopted evaluation metrics are shortly

described in the following.

ShanghaiTech Dataset. ShanghaiTech crowd counting

dataset [33] consists of 1198 annotated images divided into

two parts. Part A contains 482 images which are randomly

crawled from the Internet. Part B includes 716 images

which are taken from the busy streets of metropolitan area

in Shanghai city.

UCF CC 50 Dataset. This dataset is a collection of 50 im-

ages of very crowd scenes [9]. There the number of peo-

ple varies from 94 to 4543 in images. Following classical

benchmarks on this dataset, we use 5-fold cross-validation

to evaluate the performance of our method.

UCF-QNRF Dataset. UCF-QNRF dataset is the recent

dataset [11] containing 1535 images. The number of people

in an image varies from 49 to 12865, making this dataset

feature huge density variation. Furthermore, the images in

this dataset also have very huge resolution variation (e.g.,

ranging from 400× 300 to 9000× 6000).

Evaluation metrics. We employ two standard met-

rics, i.e., Mean Absolute Error (MAE) and Mean Squared

Error (MSE). MAE and MSE are defined as

MAE =
1

M

M
∑

i=1

|ci − ĉi|,MSE =

√

√

√

√

1

M

M
∑

i=1

(ci − ĉi)
2
,

(4)
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Method
ShanghaiTech Part A ShanghaiTech Part B UCF CC 50 UCF-QNRF

MAE MSE MAE MSE MAE MSE MAE MSE

MCNN [33] 110.2 173.2 26.4 41.3 377.6 509.1 277 -

CMTL [27] 101.3 152.4 20.0 31.1 322.8 397.9 252 514

Switch-CNN [23] 90.4 135.0 21.6 33.4 318.1 439.2 228 445

CP-CNN [28] 73.6 112.0 20.1 30.1 298.8 320.9 - -

ACSCP [24] 75.7 102.7 17.2 27.4 291.0 404.6 - -

L2R [18] 73.6 112.0 13.7 21.4 279.6 388.9 - -

D-ConvNet-v1 [25] 73.5 112.3 18.7 26.0 288.4 404.7 - -

CSRNet [15] 68.2 115.0 10.6 16.0 266.1 397.5 - -

ic-CNN [22] 69.8 117.3 10.7 16.0 260.9 365.5 - -

SANet [3] 67.0 104.5 8.4 13.6 258.4 334.9 - -

CL [11] - - - - - - 132 191

VGG16 (ours) 72.9 114.5 12.1 20.5 225.4 372.5 120.6 205.2

SPN (ours) 70.0 106.3 9.1 14.6 204.7 340.4 110.3 184.6

SPN+L2SM (ours) 64.2 98.4 7.2 11.1 188.4 315.3 104.7 173.6

Table 1. Quantitative comparison of the proposed method with state-of-the-art methods on three benchmark datasets.

Method SPN
L2SM (G=3) L2SM (G=4) L2SM/S2AD (G=5)

C = 2 C = 2 C = 1 C = 2 C = 3 C = 4 C = 5

MAE 70.0 65.1 66.1 67.2/68.9 65.4/68.1 64.2/67.0 67.1/69.2 69.8/73.6

MSE 106.3 100.4 103.5 102.3/110.3 100.7/107.3 98.4/105.4 101.6/108.7 104.5/113.5

Cost time (s) 0.524 0.576 0.569 0.539/0.540 0.550/0.551 0.565/0.563 0.583/0.580 0.592/0.587

Table 2. Ablation study on different settings of dense region selection, number of centers C, and different ways of learning to scale. L2SM

denotes the proposed learning to scale module and S2AD denotes that we directly scale the selected regions to the average density.

K ×K setting MAE MSE

2× 2 68.0 107.1

4× 4 67.2 106.3

6× 6 67.9 106.9

8× 8 68.5 109.1

Table 3. Ablation study on K × K image domain divisions for

selecting dense region to re-predict under one center setting.

where ci (resp. ĉi) represents the ground-truth (resp. esti-

mated) number of pedestrians in the i-th image, and M is

the total number of testing images.

4.2. Implementation Details

We follow the setting in [15] to generate the ground-truth

density map. For a given dataset, we first evenly divide all

the images in the dataset into G groups of regions with in-

creasing densities, and attempt to centralize the top C dens-

est groups of regions to C similar density levels (i.e., C
centers applied in the center loss), respectively. In the fol-

lowing, if not explicitly specified, G is set to 5, and C is set

to 3 for all the used datasets except for UCF CC 50 dataset.

Since there are very crowded people in the whole image do-

main, we centralize all regions to C = 5 similar density

levels for UCF CC 50 dataset. The hyperparameter K used

for dividing each image into K ×K regions is set to 4.

The loss function described in Eq. (3) is used for the

model training. We set λ1 to 1 and discuss the impact of

λ2 in Eq. (3) in the following. We use Adam [12] op-

timizer to optimize the whole architecture with the learn-

ing rate initialized to 1e-5. When training on the UCF-

QNRF dataset containing images of very high resolutions

(e.g., 9000 × 6000), we first down-sample the image of

which resolution is larger than 1080p to 1920×1080. Then

we divide each image into 2 × 2 and combine them into a

tensor with batch size equal to 4. When training on the other

datasets, we directly input the whole image to our network.

During inference, we first generate an initial density map

D̂ for the whole input image, and then select dense regions

from K ×K divisions based on the average initial density

Di on each region Ri. If Di is larger than a predefined

value for selecting the top C densest groups of regions in

training, we replace the initial density map prediction with

scaled re-prediction for each selected dense region Ri.

The proposed method is implemented in Pytorch [20].

All experiments are carried out on a workstation with an In-

tel Xeon 16-core CPU (3.5GHz), 64GB RAM, and a single

Titan Xp GPU.

4.3. Experimental Comparisons

The proposed method outperforms all the other com-

peting methods on all the benchmarks. The quantitative

comparison with the state-of-the-art methods on these three

datasets is presented in Table 1.

ShanghaiTech. Our work outperforms SANet [3], the state-

of-the-art method, by 2.8 in MAE and 6.1 in MSE on the

ShanghaiTech Part A and 1.2 in MAE and 2.5 in MSE on
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Method
Part A→Part B Part B→Part A Part A→UCF CC 50 UCF-QNRF→Part A Part A→UCF-QNRF

MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

MCNN [33] 85.2 142.3 221.4 357.8 397.7 624.1 - - - -

D-ConvNet-v1 [25] 49.1 99.2 140.4 226.1 364 545.8 - - - -

L2R [18] - - - - 337.6 434.3 - - - -

SPN (ours) 23.8 44.2 131.2 219.3 368.3 588.4 87.9 126.3 236.3 428.4

SPN+L2SM (ours) 21.2 38.7 126.8 203.9 332.4 425.0 73.4 119.4 227.2 405.2

Table 4. Cross dataset experiments on the ShanghaiTech, UCF CC 50, and UCF-QNRF datasets for assessing the transferability of different

methods.
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Figure 5. Ablation study on the effect of weight of the center loss

under one center and on whether using ground-truth transforma-

tion when scaling for re-prediction. W/ TransedGT means ground-

truth transformation is used while W/O TransedGT means it is not

used.

the ShanghaiTech Part B. It is shown in Table 1 that L2SM

improves the performance of our SPN by 5.8 in MAE and

7.9 in MSE on the ShanghaiTech Part A, and 1.9 in MAE

and 3.5 in MSE on the ShanghaiTech Part B. In fact, Shang-

haiTech Part A contains images that are more crowded than

ShanghaiTech Part B, and the density distribution of Shang-

haiTech Part A varies more significantly than that of Shang-

haiTech Part B. This may explain that the improvement of

the proposed L2SM on the ShanghaiTech Part A is more

significant than that on the ShanghaiTech Part B.

UCF CC 50. We then compare the proposed method with

other related methods on the UCF CC 50 dataset. To the

best of our knowledge, UCF CC 50 dataset is currently

the densest dataset publicly available for crowd count-

ing. The proposed method achieves significant improve-

ment over state-of-the-art methods. For example, SANet [3]

achieves 258.4 in MAE and 334.9 in MSE, while our

method achieves 188.4 in MAE and 315.3 in MSE, respec-

tively.

UCF-QNRF. We also conduct experiments on the UCF-

QNRF dataset containing images of significantly multiple

density distributions and resolutions. By limiting the max-

imal image size to 1920 × 1080, our VGG16 baseline al-

ready achieves state-of-the-art performance. The proposed

SPN brings an improvement of 10.3 in MAE and 20.6 in

MSE compared with VGG16 baseline. The proposed L2SM

further boosts the performance by 5.6 in MAE and 11.0 in

MSE.

4.4. Ablation Study

The ablation studies are mainly conducted on the Shang-

haiTech part A dataset, as it is a moderate dataset, neither

too dense nor too sparse, and covers a diverse number of

people heads.

Effectiveness of different learning to scale settings. For

the learning to scale process, we first evenly divide the im-

ages in a whole dataset into G groups of regions with in-

creasing density, and then attempt to centralize the densest

C groups of regions to C similar density levels. As shown in

Table 2, the number of groups G and the number of centers

C are important for accurate counting. For a fixed num-

ber of groups (e.g., G = 5), centralizing more and more

regions leads to slightly improved counting results. Yet,

when we attempt to centralize every image region, we also

re-predict the density map for very sparse or background

regions, bringing more background noise and thus yield-

ing slightly decreased performance. A relative finer group

divisions with a proper number of centers performs slightly

better. As shown in Table 2, the proposed L2SM with multi-

polar center loss performs much better than directly scaling

the regions to the average density (S2AD) in each group.

Time overhead. To analyze the time overhead of the pro-

posed L2SM, we conduct experiments under seven differ-

ent settings (see Table 2). The time overhead analysis is

achieved by calculating the average inference time on the

whole ShanghaiTech Part A test set. The batch size is set

to 1 and only 1 Titan-X GPU is used during inference. The

average time overhead of SPN is about 0.524s per image.

When we increase the number of centers and the number

of regions to be re-predicted, the runtime slightly increases.

When using 5 centers and re-predict all the K ×K regions,

the proposed L2SM increases the runtime by 0.068s per im-

age, which is negligible compared with the whole runtime.

Effectiveness of the weight of MPCL. We study the effec-

tiveness of multipolor center loss on the ShanghaiTech Part
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Figure 6. Qualitative visualization of predicted density map on two examples. From left to right: original image, prediction given by SPN,

re-predicted density map with L2SM on selected regions (englobed by black boxes), and ground-truth density map.

A using one center by changing its weight λ2 in Eq. (3).

Note that when the weight λ2 is set to 0, the MPCL is not

used, which means that the scale ratio r is learned automat-

ically without any specific supervision. As shown in Fig. 5,

The use of MPCL which brings regions of significantly mul-

tiple density distributions to similar density levels plays an

important role in improving the counting accuracy. It is also

noteworthy that the performance improvement is rather sta-

ble for a wide range of weight of the MPCL.

Effectiveness of the ground-truth transformation. We

also study the effect of ground-truth transformation applied

in scale to re-predict process. As shown in Fig. 5, the

ground-truth transformation by enlarging the distance be-

tween crowded heads is more accurate than directly scale

the ground-truth density map. It is not surprised to under-

stand that enlarging the distance between crowded heads re-

sults in regular Gaussian density blobs for dense regions,

which reduces the density pattern shift thus facilitates the

density map prediction.

Effectiveness of the division. We also conduct experiments

by varying the K ×K image domain divisions. As shown

in Table 3. The performance is rather stable across different

image domain division.

4.5. Evaluation of Transferability

To demonstrate the transferability of the proposed

method across datasets, we conduct experiments under

cross dataset settings, where the model is trained on the

source domain and tested on the target domain.

The cross dataset experimental results are presented in

Table 4. We can observe that the proposed method gener-

alizes well to unseen datasets. In particular, the proposed

method consistently outperforms D-ConvNet-v1 [25] and

MCNN [33] by a large margin. The proposed method also

performs slightly better than L2R [18] in transferring mod-

els trained on ShanghaiTech Part A to UCF CC 50. Yet,

the improvement is not as significant as the comparison

with [33, 25] on transferring between ShanghaiTech Part A

and Part B. This is probably because L2R [18] also relies on

extra data which may somehow help to reduce the gap be-

tween the two datasets. As shown in Table 4, the proposed

L2SM plays an important role in ensuring the transferabil-

ity of the proposed method. Furthermore, as shown in Ta-

ble 1 and Table 4, the proposed method under cross-dataset

settings performs competitively or even outperforms some

methods [23, 28, 27, 33] using the proper training set. This

also confirms the generalizability of the proposed method.

5. Conclusion

In this paper, we propose a Learning to Scale Module

(L2SM) to tackle the problem of large density variations

for crowd counting. We achieve density centralization by

a novel use of multipolar center loss. The L2SM can ef-

fectively learn to scale significantly multiple dense regions

to similar density levels, making the density estimation on

dense regions more robust. Extensive experiments on three

challenging datasets demonstrate that the proposed method

achieves consistent and significant improvements over the

state-of-the-art methods. L2SM also shows the noteworthy

generalization ability to unseen datasets with different den-

sity distributions, demonstrating the effectiveness of L2SM

in real applications.
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