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Abstract. Image classification is an important topic in computer vision.
As a key procedure, encoding the local features to get a compact repre-
sentation for image affects the final classification accuracy largely. There
is no doubt that encoding procedure leads to information loss, due to
the existence of quantization error. The residual vector, defined as the
difference between the local image feature and its corresponding visual
word, is the chief culprit that should be responsible for the quantiza-
tion error. Many previous algorithms consider it as a coding issue, and
focus on reducing the quantization error by reconstructing the feature
with more than one visual words, or by the so-called soft-assignment
strategy. In this paper, we consider the problem from a different view,
and propose an effective and efficient model, which is called Multiple
Stage Residual Model (MSRM), to make full use of the residual vector
to generate a multiple stage code. Our proposed model is a generic frame-
work, which can be built upon many coding algorithms and improves the
image classification performance of the coding algorithms significantly.
The experimental results on the image classification benchmarks, such as
UIUC 8-Sport, Scene-15, Caltech-101 image dataset, confirm the validity
of MSRM.

1 Introduction

Image classification is an important topic in computer vision with many appli-
cations, such as image retrieval [1,2], video retrieval and web content analy-
sis [3]. Given an input image, the aim of image classification is to assign one or
more class labels to it, or in other words, to determine its category. The Bag-
of-Features (BoF) [4,5] model may be the most successful framework in image
classification for its invariance to scale, translation and rotation.

The pipeline of a typical BoF image classification model is illustrated in
Fig. 1. It consists of five basic steps: patch extraction, patch description, code-
book learning, feature coding and feature pooling. With an input image in hand,
the step of patch extraction is to generate lots of small patches via dense sam-
pling, which are described by some local image descriptors in the patch descrip-
tion procedure. Various descriptors, such as SIFT [6] or HoG [7] can be used
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Fig. 1. The pipeline of general image classification framework

to describe these local patches. In the process of codebook learning, a subset of
features randomly sampled in the training images are gathered to learn the code-
book by some codebook learning algorithms (e.g. K-means [8]). Feature coding
offers the way to generate the code for each local image descriptor, and in the fea-
ture pooling step, these codes are pooled together to get the final representation
of an image.

Among the aforementioned five steps, feature coding plays an important role
for its great impact on the accuracy and speed of image classification. Recently,
many coding algorithms [9–23] have been proposed. The representative coding
method is Hard-assignment Coding (HC) [9]. HC only accounts for the near-
est visual word of a local feature for coding, which makes HC sensitive to the
selection of the codebook. Localized Soft-assignment Coding (LSC) [11] adopts
an “early cut-off” strategy, and assign the local feature to more than one visual
words. The response coefficient for each visual word is determined by the dis-
tance between the local feature and the visual word. Different from voting-based
algorithms like HC, Sparse Coding [18] shows its superiority gradually, but it
is time-consuming. Locality-constrained Linear Coding (LLC) [10], as a typical
sparse coding method, attaches more importance to locality than sparsity, and
offers an efficient way to compute the approximate sparse code. Salient Coding
(SC) [16] introduces the concept of “salience”, and guarantees a salient repre-
sentation without deviations.

After the codes of all local features are computed, the feature pooling step
is adopted to integrate these codes together to generate an equal sized feature
vector for each image in the database. The common used pooling methods are
sum-pooling [9] and max-pooling [18]. A comprehensive analysis can be found
in [24–26]. Meanwhile, in order to include the spatial information in the pooling
step, Spatial Pyramid Matching (SPM) [9] is conducted via dividing the image
into increasingly finer subregions. Each subregion is pooled individually, and all
pooled features are concatenated to form the final feature vector of the whole
image.
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Note that all the algorithms mentioned above consider reducing the quan-
tization error, caused by the residual vector (the difference between the local
feature and its corresponding visual word), as a feature coding issue. However in
this paper, we propose a model called Multiple Stage Residual Model (MSRM)
to make full use of the residual vector instead. We prove that our proposed model
leads to less information loss compared with HC [9], and can achieve a better
performance. Meanwhile, we manage separating the vector quantization process
from feature coding process, and making MSRM a generic framework by intro-
ducing various state-of-the-art coding algorithms [9,10,16,27] to MSRM. We
also observe that the code of each stage shows some properties of complemen-
tarity, and discriminative classifiers, such as SVM, can be used to select several
representative stages to get a higher classification accuracy. MSRM consists of
several concatenated codebooks, and the output of each stage is the input of the
next stage, which is simple and fast to compute.

The rest of this paper is organized as follows: In Sect. 2 we introduce some
related work briefly. The introduction of MSRM is given in Sect. 3. In Sect. 4, we
carry out several experiments on three benchmark datasets, and the experimental
results prove the effectiveness of the proposed model. Conclusions are given in
Sect. 5.

2 Related Work

Considering that MSRM is a generic model, in which many encoding methods
can be embedded, we review some typical coding strategies recently proposed in
the literature. These coding strategies act as a baseline, and a full comparison
will be conducted in Sect. 4.

Based on the classification standard for coding methods in [28], these meth-
ods are grouped into five categories: voting-based methods, reconstruction-based
methods, saliency-basedmethods, local tangent-basedmethods, and fisher coding-
based methods.

Let C = {c1, c2, . . . , cn} (1 ≤ i ≤ n, ci ∈ Rd) denote the codebook previously
learned in the training set, and n represents the codebook size. In the case of
extracting SIFT as the local image descriptor, the dimension d is usually 128.
xi ∈ Rd denotes the ith feature densely extracted in an image. Let wi be the
code of xi, and wij be the response value of xi with respect to cj .

Hard-assignment coding (HC) [9] is a representative of voting-based methods.
For each local descriptor xi in an image, HC assigns it to the nearest visual word
in the codebook under a certain metric. It means there is only one non-zero ele-
ment in wi. Locality-constrained Linear Coding (LLC) [10] is a typical example
of reconstruction-based methods. Unlike traditional sparse coding methods, LLC
emphasizes the importance of locality instead of sparsity, since locality must lead
to sparsity but not necessary vice versa. A fast approximation of LLC is pro-
posed in [10] to improve the computational efficiency. Salient Coding (SC) [16]
is a representative method of saliency-based methods. SC deems that saliency is
a fundamental property in coding, and define a “saliency” degree based on the
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nearest visual word cj to xi. Super Vector Coding (SVC) [15] is a representative
of local tangent-based methods. Super Vector Coding considers feature coding as
a manifold approximation using the visual words by assuming that all features
constitute a smooth manifold. Improved Fisher Kernel(IFK) [14] is a representa-
tive of fisher coding-based methods. In IFK, the probability density distribution
of the local features is described by the Gaussian mixture models. Vector of Local
Aggregated Descriptors (VLAD) [27,29] aggregates the local features based on
a locality criterion in feature space. It is known that VLAD is deemed as a
simplified and non-probabilistic version of IFK, and becomes SVC if combined
with BoF. Although VLAD is initially designed for large scale image retrieval,
we prove it also effective in image classification as shown in Sect. 4. Considering
the simpleness of VLAD, we adopts VLAD to get a compact representation for
image throughout our experiments. The definitions of all the aforementioned
coding algorithms are listed in Table 1.

Table 1. The coding algorithms used in our proposed model, and their corresponding
definitions.

Algorithms Definitions

HC [9] wij =

⎧
⎨

⎩

1 if j = arg min
j=1,2,...,n

‖xi − cj‖2
2

0 otherwise

LLC [10] wi = arg min ‖xi − cwi‖ + λ ‖di � wi‖ , s.t. 1Twi = 1

SC [16] wij =

⎧
⎪⎨

⎪⎩

1 − ‖xi−cj‖2

1
K−1

K∑

k �=j
‖xi−ck‖2

if j = arg min
j=1,2,...,n

‖xi − cj‖2
2

0 otherwise

VLAD [27,29] wij =

⎧
⎨

⎩

xi − cj if j = arg min
j=1,2,...,n

‖xi − cj‖2
2

0 otherwise

Spatial Pyramid Matching (SPM) [9] has been proven to be effective in the
pooling procedure with spatial information included. SPM starts with dividing
an image into subregions, and obtains the histogram of each region via a pool-
ing function F . Usually, the pooling function F is max-pooling which selects
the largest response value along each dimension of all the codes in a certain
region, or sum-pooling that simply adds all the values. The “pyramid” means
that the spatial division of image ranges from a global one, i.e., the entire image,
to several local subregions. The final image representation is obtained by con-
catenating these histograms together. Other algorithms, such as Spatial Local
Coding (SLC) [30], Feature Context [31], are also widely-used for modelling the
spatial information.
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Algorithm 1. Multiple Stage Codebook Learning with K-means
Input: The training features X for codebook learning; The codebook size n; The

number of stage m.
Output: The learned codebook C = {C1, C2, . . . , Cm}.
1: for each j ∈ [1, m] do
2: divide X into n clusters via K-means through Eq. 1 and Eq. 2;
3: and output the cluster centers Cj ;
4: for each x ∈ X do
5: compute the residual vector r(x) = x − q(x);
6: x = r(x);
7: end for
8: end for

3 Multiple Stage Residual Model

Multiple Stage Residual Model has one codebook in each stage, and each stage
will output a code with an encoder. The detail of MSRM is as follows.

3.1 Preliminary

Multiple Stage Vector Quantization (MSVQ) is a classic channel coding algo-
rithm commonly used in Digital Voice Processing.

The theory of MSVQ is as follows: (1) Given an input signal represented by
a vector x and the multiple stage codebook C = {C1, C2, . . . , Cm}, where m is
the number of stage. Each component Cj is the codebook in the jth stage of C
with codebook size n (2) in the jth stage, the cji with the minimum distortion
is determined, and the subscript i, as well as the stage number j, is passed into
channel (3) the input of the next stage, i.e. the (j + 1)th stage, is the residual
vector r(x) = x− cji . Following the same principle, cj+1

i is determined again (4)
the procedure of (2)(3) is iteratively conducted, until the final stage is reached
(5) in the receiving terminal, the decoder reconstructs the signal by using the
subscripts and the multiple stage codebook.

In this paper, we try to propose a specifically designed model similar to
MSVQ for large scale image classification. One of our goals is the generality
of the model, and we want to adapt as many as state-of-the-art feature coding
methods to this model.

3.2 Codebook Learning in MSRM

Codebook learning is a necessary step before encoding the local features. There
are various codebook learning algorithms in an unsupervised way [8], a weakly-
supervised way [32], or a supervised way [33,34].

Among all the codebook learning algorithms, K-means may be the most
widely used one for its simpleness and stableness. Given a randomly selected sub-
set X of SIFT descriptors of the training set and the codebook size n, K-means
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seeks n vectors C = {c1, c2, . . . , cn} iteratively, and minimizes the approximation
error E defined as

E =
∑

x∈X
‖x − q(x)‖2 (1)

x → q(x) = argmin
c∈C

‖x − c‖2 (2)

Our proposed model also adopts K-means to learn the multiple stage code-
book C = {Cj , 1 ≤ j ≤ m}. The pseudocode is presented in Algorithm 1.

3.3 Encoder in MSRM

As is presented in Sect. 2, many different coding strategies were proposed. In
order to embed these coding strategies into our proposed model, we separate the
vector quantization procedure from the feature coding procedure. Specifically,
for a given local image descriptor x, on the one hand we only consider the
nearest visual word to compute the residual vector r(x) = x − q(x) according
to Eq. 2 and pass the residual vector to the next stage, which is the new feature
vector to be encoded in the future. On the other hand, we does not restrict
the way and the number of the visual words used to generate the code for x,
which is usually determined by the coding algorithm. For example, if LLC [10]
is chosen as the encoder of MSRM, we use k (k is usually set to 5) visual words
to encode x, and use only the nearest word to generate the residual vector. Our
interpretation is that the nearest visual word to x captures its main pattern,
and all the local image descriptors lying in the same cluster will eliminate the
information redundancy if all of them are deprived with their common pattern.
The operations of computing the residual vector and encoding the features are

Fig. 2. The pipeline of Multiple Stage Residual Model. The input x is the local descrip-
tor to be encoded. Ci (1 ≤ i ≤ m) is the ith stage codebook. The encoder can be various.
fj (1 ≤ j ≤ m) is the encoded feature via the encoder. The final representation for x
is the concatenation of the output from all stages.
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iteratively conducted until the final stage is reached. The pipeline of Multiple
Stage Residual Model is illustrated in Fig. 2.

According to the taxonomy presented in [28], we introduce some typical algo-
rithms as the encoder to our proposed model. Specifically, Hard-assignment Cod-
ing [9] is the representative of voting-based coding methods. Local-constrained
Linear Coding [10] is the representative of reconstruction-based coding meth-
ods. Salient Coding [16] is the representative of saliency-based coding methods.
Vector of Aggregated Local Descriptors [27] is used to replace the role of Super
Vector-coding [15] (one of local tangent-based coding methods), and Improve
Fisher Kernel [14] (one of fisher coding-based methods). When the stage num-
ber m is set to 1, our proposed model degenerates into the original encoding
algorithms.

As shown in Sect. 4, the codes from different stages are greatly complemen-
tary to each other. If the classifier cannot give the image a right label prediction
with the codes from a certain stage, the prediction can be revised with the usage
of the codes from other stages in most cases.

4 Experiments

In this section, we first evaluate the effectiveness of MSRM on two benchmarks
particularly collected for scene classification. We will give a comparison with the
original algorithms to show the extent that MSRM can improve the baseline
on Scene-15 dataset [9], UIUC 8-sport dataset [35]. An extra experiment is also
conducted in Caltech-101 dataset [36] to evaluate the performance of MSRM in
object recognition.

4.1 Implementation Details

If not specified, we adopt the following setup for all of our experiments. Note
that some results of a certain coding method offered by us may be different from
the results reported in the original papers or in the survey articles [28,37], since
different settings lead to different results. For example, SC [16] conducts the
experiment in Scene-15 dataset under 4096 codes, HC in [28] adopts a Hellingers
kernel to boost its performance. In order to get a proper assessment of MSRM, we
re-implement the experiments of HC [9], SC [16], LLC [10], VLAD [27] according
the following rule. The comparisons to the original results from the original
papers are also conducted.

Feature Extraction: The standard dense SIFT is extracted on a patch size
32×32, with step size fixed to 4 pixels, by using the vl dsift command available
in the public toolbox VLFeat [38].

Codebook Generation: Following the instruction described in Sect. 3.2, we
learning a multiple stage codebook via k-means clustering. The codebook size
depends on the coding algorithm that applied to MSRM. In particular, HC, LLC
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and SC adopt a relative larger codebook with a size of 1024, and 64 for VLAD
respectively.

Coding and Pooling: As for the implementation of VQ, LLC and SC, we use
the codes released by Huang in [28] to encode the local features. In order to
include the spatial information, SPM [9] with 3 levels: 1 × 1, 2 × 2 and 4 ×
4 is adopted with a same weight for each level. We use vl vlad command in
VLFeat for VLAD coding, and no spatial information is included. The max-
pooling operation is performed with LLC and SC, and HC and VLAD use the
sum-pooling operation.

Database Setup: Database images are resized to no more than 300 × 300 in
all datasets except for UIUC 8-Sport, since images in this dataset have higher
resolutions. We keep the maximum image size of UIUC 8-Sport dataset 400×400.

Classifier: Linear SVM, implemented by Liblinear toolbox [39], is used. We set
the penalty parameter in SVM to 10.

4.2 Scene-15 Dataset

Scene-15 dataset [9] contains 15 categories and 4485 images, with 200–400 images
per category. The categories vary from indoor scenes like bedrooms, to outdoor
scenes like mountains. Based on the common experimental setting, 100 images
per category are taken as training data, and the rest are used for testing.

Figure 3 presents the performance of MSRM with different encoders. As we
can draw from Fig. 3, MSRM can significantly improve the performance com-
pared with the original state-of-the-art coding algorithms. Generally, the classi-
fication accuracy improves as the stage number increases, and it gets saturated
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Fig. 3. The experimental results of MSRM with different encoders on Scene-15 dataset.
The x-axis denotes the stage number m in MSRM, and the y-axis denotes the classifi-
cation accuracy.
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when the stage number comes to 5. The classification accuracy is increased
by 6.94% for HC [9], 2.90% for LLC [10], 4.79% for SC [16] and 9.67% for
VLAD [27] when MSRM sets the stage number to 5. As we can see, our pro-
posed model is especially suitable for HC and VLAD. The reason might be that
both HC and VLAD only consider the nearest visual word in the codebook to
encode a local feature, and our proposed model can boost their performances
largely by making use of the computed residual vector. In comparison, both LLC
and SC take into account the contributions from more than one visual words, so
the improvements of MSRM with LLC and SC are not as obvious as that with
HC and VLAD, but are still convincing. The performance of MSRM is slightly
lower than that of IFK [14] reported in [28]. However, the classification accuracy
of MSRM with VLAD can be improved to 86.90 % if SPM [9] is used, which is
comparable to IFK.

We also compare the performance of different coding methods in Table 2. As
can be seen, the accuracy of our implementation for HC is much lower than that
in [9], MSRM also enhances its discriminative ability, and even surpasses the
original LLC and SC. As for SC, the original paper obtains a high performance
since multi-scale dense sift and a larger codebook are used. VLAD is rarely used
for scene classification, but usually applied to image retrieval. In this paper, we
find VLAD also suitable to image classification. The results show that VLAD,
integrated into MSRM, can achieve a superior performance to many state-of-
the-art coding algorithms.

Table 2. The comparison of classification accuracies on Scene-15 dataset. (The tag “�′′

in the top right corner of a certain algorithm means that the classification accuracy of
this algorithm is not implemented by us, but comes from the corresponding paper, or
the survey articles.)

Algorithms Accuracies (%)

Hard-assignment Coding� [9] 78.87 ± 0.52

Locality-constrained Linear Coding� [10] 80.50 ± 0.63

Salient Coding� [16] 82.55 ± 0.41

Locality-Constrained and Spatially Regularized Coding� [13] 82.67 ± 0.57

Localized soft-assignment Coding� [11] 82.70 ± 0.39

Improved Fisher Kernel [14] 87.00±0.00

Hard-assignment Coding [9] + MSRM 83.25 ± 0.50

Vector of Aggregated Local Descriptors [27] + MSRM 84.03 ± 0.64

Salient Coding [16] + MSRM 84.62 ± 0.61

Locality-constrained Linear Coding [10] + MSRM 85.42 ± 0.72

Vector of Aggregated Local Descriptors+ MSRM + SPM 86.90 ± 0.45
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Fig. 4. The experimental results of MSRM with different encoders on UIUC 8-sport
dataset. The x-axis denotes the stage number m in MSRM, and the y-axis denotes the
classification accuracy.

4.3 UIUC 8-Sport Dataset

UIUC 8-Sport [35] is particularly collected for image-based event classification,
and it consists of 1579 images grouped into 8 sport categories: badminton, bocce,
croquet, polo, rock climbing, rowing, sailing and snow boarding. According to
the standard setup for classification, we use 10 splits of the data, and random
select 70 images from each category for training and 60 images for testing. The
average accuracy, as well as the standard deviation, is reported.

The classification accuracies of MSRM with different encoders are illustrated
in Fig. 4. We can also observe the positive effect on classification results brought
by MSRM to various encoders. An exciting accuracy of 89.09±0.96 is achieved
by MSRM in conjunction with VLAD when the stage number is set to 5.
The baseline of VLAD in UIUC 8-sport dataset is merely 83.56± 1.70, and is
improved by nearly 6 % via MSRM.

We compare our proposed MSRM with some related algorithms in Table 3.
The performance of MSRM is better than many coding methods [10,11,13,16],
even outperforms Low Rank Sparse Coding [12], which achieves the state-of-the-
art result recently.

4.4 Caltech-101 Dataset

We also evaluate our proposed model for object recognition in Caltech-101
dataset [36]. Caltech-101 dataset consists of 101 object categories including ani-
mals, faces, plants etc., with 31–800 images per category. Following the standard
experimental setting, we use 10 random splits of the data, while taking 30 ran-
dom images per class for training and the rest for testing. Considering that
Caltech-101 dataset is a relatively larger database, we extract dense sift at three
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Table 3. The comparison of classification accuracies on UIUC 8-sport dataset.

Algorithms Accuracies (%)

Hard-assignment Coding� [9] 79.98 ± 1.67

Locality-constrained Linear Coding� [10] 81.77 ± 1.51

Localized soft-assignment Coding� [11] 82.29 ± 1.84

Salient Coding� [16] 85.44 ± 1.54

Locality-Constrained and Spatially Regularized Coding� [13] 87.23 ± 1.14

Low Rank Sparse Coding� [12] 88.17 ± 0.85

Hard-assignment Coding [9] + MSRM 84.35 ± 1.16

Locality-constrained Linear Coding [10] + MSRM 88.46 ± 1.13

Salient Coding [16] + MSRM 89.07 ± 1.49

Vector of Aggregated Local Descriptors [27] + MSRM 89.09±0.96

scales: 16 × 16, 24 × 24, 32 × 32. Since the spatial layout of object in the image
is important in object recognition, we apply SLC [30] to VLAD coding.

In Fig. 5, we plot the performance of MSRM with different encoders under dif-
ferent stage numberm. Similar to our experiments in the previous dataset, MSRM
improves our selected encoders significantly, i.e. HC [9] by 5.07%, LLC [10] by
3.47%, SC [16] by 5.33%, VLAD [27] by 7.02%. The performance of HC is much
different from the results reported in [28], due to the usage of Hellinger kernel. We
conduct the experiment of HC to make clear the effect of Hellinger kernel, and
find that Hellinger kernel is extremely useful to HC in this dataset. A significant
improvement of 13.25% is observed.
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Fig. 5. The experimental results of MSRM with different encoders on Caltech-101
dataset. The x-axis denotes the stage number m in MSRM, and the y-axis denotes the
classification accuracy.
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Table 4. The comparison of classification accuracies on Caltech-101 dataset.

Algorithms Accuracies (%)

Hard-assignment Coding� [9] 69.43 ± 0.52

Salient Coding� [16] 69.55 ± 0.83

Locality-constrained Linear Coding� [10] 71.67 ± 0.86

Localized soft-assignment Coding� [11] 72.58 ± 1.08

Locality-Constrained and Spatially Regularized Coding� [13] 73.23 ± 0.81

Low Rank Sparse Coding� [12] 75.02 ± 0.74

Hard-assignment Coding [9] + MSRM 61.88 ± 1.15

Salient Coding [16]+MSRM 71.73 ± 1.47

Locality-constrained Linear Coding [10] + MSRM 76.56 ± 0.90

Vector of Aggregated Local Descriptors [27] + MSRM 76.59±0.51

We also list some excellent results reported by other algorithms in Table 4.
Our proposed model also obtains competitive performance compared with many
state-of-the-art algorithms.

4.5 Discussion

Information Loss: Average Quantization error is an important index in eval-
uating a feature coding algorithm, which is defined as

AQE =
1
N

N∑

i=1

‖xi − cwi‖2 (3)

Large quantization error results in much information loss in the coding proce-
dure, which impairs the classification accuracy heavily. The quantization error
is brought in when we represent a local descriptor x by a visual word q(x) ∈ C.
Such a behaviour is simple, but also somehow harmful due to the existence of
the residual vector r(x) = x − q(x) between x and q(x). Some previous meth-
ods [10,11,13] use more visual words to represent x to alleviate the problem.

In MSRM (we take Two Stage Residual Model with HC as example), the local
descriptorx is represented by a tuple (q1(x), q2(x − q1(x))), where qi(x) is the near-
est visual word of x in Ci. The encoder applied to the tuple (q1(x), q2(x − q1(x)))
generates the code for x.

We use Hard-assignment Coding (HC) [9] to show the way that MSRM reduces
the quantization error. The AQE of HC is

AQEHC =
1
N

N∑

i=1

‖xi − q1(xi)‖2 (4)
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while the AQE of MSRM with HC is

AQEMSRM =
1
N

N∑

i=1

‖xi − q1(xi) − q2(xi − q1(xi))‖2 (5)

It is straightforward that the energy of the residual vector x − q(x) is relatively
smaller than x itself. We compute the AQE of MSRM with HC in Scene-15 dataset,
UIUC 8-sport dataset [35] and Caltech-101 dataset [36]. The result is presented in
Table 5, and find thatMSRMcan significantly reduce the quantization error, which
strongly explains why MSRM with HC as the encoder can improve the baseline.

Table 5. The Average Quantization Error in different datasets.

Scene-15 dataset UIUC 8-sport dataset Caltech-101 dataset

HC [9] 2.16 3.02 3.02

HC + MSRM 1.01 1.43 1.73

Complementarity: We also observe that the output of each stage in MSRM is
complementary to each other, and the powerful classifier SVM is able to select
several distinctive stages to distinguish images from different categories.

In order to prove our conjecture,we conduct an interesting experiment shown in
Fig. 6, that the features from each stage in MSRM with VLAD as the encoder form
the input training set and testing set for SVM. We select one misclassified image
per category, and find that although the classifier cannot give a correct judgement
for the label of the image according to the features from 1st stage in MSRM, i.e. the

Category RockClimbing Badminton Bocce Croquet Polo Rowing Sailing Snowboarding

image

1st Bocce Rowing RockClimbing Polo Bocce Snowboarding Croquet Snowboarding

2nd RockClimbing Sailing Bocce Croquet Bocce Sailing Sailing Polo

3rd RockClimbing Badminton Croquet Croquet Polo Rowing Sailing Sailing

4th RockClimbing Badminton Croquet Croquet Polo Rowing Croquet Snowboarding

5th RockClimbing Badminton Bocce Rowing Polo Sailing Sailing Sailing

1st→5th RockClimbing Badminton Bocce Croquet Polo Rowing Sailing Snowboarding

Fig. 6. Some misclassified images in UIUC 8-sport dataset. The “Category” in the first
row indicates the ground truth of the image, and The third to the seventh row present
the predicted label that SVM outputs based on the features of each stage in MSRM. The
last row shows the result when we concatenate the features from all stages in MSRM.
The red box means a false prediction, and the green box means a correct prediction.
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original coding strategy, it can revise its prediction result with more complemen-
tary information from the latter stages in MSRM. For example, the image from
Rowing category in the seventh column of Fig. 6, is misclassified as snowboarding
in the first stage and sailing in the second stage, however, it obtains a correct label-
ing in the third stage and the fourth stage. When combining the features from all
stages, the false prediction is corrected as shown in the last row. The last column
presents an image from snowboarding is misclassified in the second, third and fifth
stage, but is assigned a right label if the features from all the stages are combined
together. This phenomena reveals the robustness of our proposed model.

To further confirm the complementarity between the features from each stage
of MSRM, we compare our proposed MSRM with a single stage coding under
the same feature dimension. Specifically, Scene-15 dataset is used, and VLAD is
selected as the encoder. For MSRM, the codebook size in each layer of MSRM is
64, and the stage number m ranges from 1 to 5. Hence the feature dimension of
MSRM for an image is 128 * 64 * m. For the single stage coding, the codebook size
is set to 64 ∗ m (1 ≤ m ≤ 5). Hence the final feature dimension for an image is
also 128 ∗ 64 ∗ m. The results are presented in Table 6, which suggest that MSRM
works significantly better than only single stage coding.

Table 6. The comparison of classification accuracy between MSRM and the single stage
coding under the same feature dimension in Scene-15 dataset.

m 1 2 3 4 5

VLAD [27] 74.36 % 78.15 % 79.35 % 80.14 % 80.18 %

VLAD+ MSRM 74.36 % 80.77 % 82.59 % 83.53 % 84.03 %

5 Conclusion

In this paper, we propose a generic model called Multiple Stage Residual Model
(MSRM) to make full use of the residual vector, while many coding algorithms
focus on reducing it. MSRM has been proved to be effective to improve the perfor-
mance of many state-of-the-art coding algorithms further.

In the future, we will study how to introduce the spatial consistency to MSRM,
and introduce more coding methods to MSRM in a proper way.
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