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Abstract—Feature coding is a fundamental issue with many
vision tasks, such as image classification, image retrieval and image
segmentation, etc. There is no doubt that the encoding procedure
leads to information loss, due to the existence of quantization
error. The residual vector, defined as the difference between the
feature and its corresponding visual word, is the chief culprit to be
responsible for the quantization error. Many previous algorithms
consider it as a coding issue, and focus on reducing the quantization
error by reconstructing the feature with more than one visual
word, or by the so-called soft-assignment strategy. In this paper,
we consider the problem from a different point of view, and
propose an effective and efficient model called multiple stage
residual model (MSRM). It makes full use of the residual vector to
generate a multiple stage code. MSRM is a hierarchical structure,
with the bottom stage producing the coarsest quantization, and
the top stage producing the finest quantization. Moreover, our
proposed model is a generic framework, which can be built
upon many coding algorithms. The interplay of such a coarse-
to-fine quantization procedure with a discriminative classifier
(e.g., SVM) can improve the classification accuracy of the baseline
algorithms significantly. As a special case of MSRM, multiple
stage vector quantization (MSVQ) can be directly used for
vector compression and approximate nearest neighbor search, and
achieves competitive performances with high efficiency.

Index Terms—Approximate nearest neighbor (ANN) search,
image classification, residual vector, shape recognition, vector
compression.

I. INTRODUCTION

F EATURE coding is a fundamental and important procedure
in computer vision with many applications, such as image

classification [1], image retrieval [2]–[4], video retrieval [5]–
[7], 3D model recognition [8], vector compression [9], web
content analysis [10] and remote sensing [11], [12]. Given a
codebook learned on the training set off-line, feature coding
algorithms allow each feature vector to activate several code-
words, and the amplitudes of responses with regard to those
activated codewords are taken as its code. Those codes are later
manipulated with some specific operations (e.g., sum-pooling
or max-pooling), or organized using some advanced indexing
strategies (e.g., inverted index) for specific tasks.
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The primary difference of feature coding algorithms is the
way of activating the codewords, i.e., which codewords are cho-
sen to activate and how to determine the activation values. In
recent years, many coding algorithms [13]–[26] have been pro-
posed. One of the most curial criterions to design feature coding
algorithms is reconstruction error. It is known that low recon-
struction error leads to less information loss, thus giving better
performances. For example, as a representative algorithm, Hard-
assignment Coding [13] only counts the nearest visual word of
an input feature, resulting in severe quantization error and in-
ferior performances. Some improvements on HC are developed
to reduce the reconstruction error by constructing the feature
with more than one visual word (e.g., Sparse Coding [22]), or
by the so-called soft-assignment strategy (e.g., kernel codebook
learning [21]).

Almost all the aforementioned algorithms consider reducing
the quantization error, caused by the residual vector (the differ-
ence between the feature and its corresponding visual word), as
a feature coding issue. In this paper, we propose a generic model
called Multiple Stage Residual Model (MSRM) to make full use
of the residual vector instead, and claim that the discriminative
power of residual vectors is ignored by those feature coding al-
gorithms more or less. MSRM is a hierarchical framework with
a coarse-to-fine quantization strategy, with the bottom stage
producing the coarsest quantization and the top stage producing
the finest quantization. It consists of several concatenated sub-
codebooks. The output of each stage are the residual vectors,
which serve as the input of the next stage. As a result, the final
output of MSRM is a multiple stage code, with different stages
in different quantization resolutions. We experimentally prove
that our proposed model leads to less information loss compared
with HC [13], and can achieve a better performance. Moreover,
we manage to separate the quantization procedure from the fea-
ture coding procedure, making MSRM a generic framework
by embedding various state-of-the-art coding algorithms [13],
[14], [18], [20], [27]. In this sense, the aim of our paper is not
to propose a new feature coding algorithm. Instead, it provides
a generic tool that can be helpful to improve the performances
of many feature coding algorithms further.

MSRM is evaluated with different visual tasks requiring fea-
ture coding algorithms. In this paper, two primary types of ex-
periments are considered. In image classification task, we in-
corporate Hard-assignment Coding [13], Locality-constrained
Linear Coding (LLC) [14], Salient Coding (SC) [20], Vector
of Local Aggregated Descriptors (VLAD) [27] and Improved
Fisher Kernel (IFK) [18] respectively into our proposed generic
model. The codes of local descriptors (e.g., SIFT [28]) gener-
ated by MSRM are pooled together to get an equal-sized feature
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vector for each image. We observe the complementarity of the
codes from different stages, and discriminative classifiers, such
as SVM, can be used to select several representative stages to
achieve a higher classification accuracy.

For vector compression task, we restrict the coding algorithms
used in MSRM as HC, since the codes of HC are either 0 or
1, which can be stored in the format of integer. By doing so,
each feature is compressed and stored with a few bytes. We
also find that with such a hierarchical coding model, each input
vector can be represented by the sum of several codewords.
As a result, approximate nearest neighbor (ANN) search with
limited memory and time cost is feasible. We compare it with
several state-of-the-art algorithms (e.g., product quantization
(PQ) [9], additive quantization (AQ) [29]). The experimental
results demonstrate the superiority of MSRM in terms of both
speed and accuracy.

A preliminary version of this paper appeared in [30]. Com-
pared with [30], extensions are made in several aspects listed as
follows.

1) We prove, both theoretically and experimentally, that our
proposed MSRM is well suitable for vector compression
and approximate nearest neighbor search. The theoretical
proof is introduced in Section III-D, and the performance
comparison with other representative algorithms is given
in Section IV-B.

2) We extend our proposed method to shape recognition task,
and state-of-the-art performances are achieved on MPEG-
7 dataset [31].

3) A more comprehensive description is presented in sections
of “introduction” and “related work”.

The rest of this paper is organized as follows. In Section II,
we introduce some related methods briefly. The introduction
of MSRM is given in Section III. In Section IV, we carry out
comprehensive experiments on different tasks. Conclusions are
drawn in Section V.

II. RELATED WORK

In this section, we give a brief review about some represen-
tative algorithms in feature encoding and vector compression,
which have close relationships with the proposed method.

A. Encoding Strategies

MSRM is a generic model, in which many encoding methods
can be embedded. Here we give a detailed introduction to those
coding strategies which are plunged successfully into MSRM.

Based on the classification standard for coding methods
in [1], these methods are grouped into five categories: voting-
based methods, reconstruction-based methods, saliency-based
methods, local tangent-based methods and fisher coding-based
methods. Let C = [c1 , c2 , . . . , cN ] ∈ Rd×N denote the code-
book learned previously in the training set, where N represents
the codebook size and d represents the feature dimension. As-
sume x ∈ Rd denotes the feature to be encoded. Let f = ϕ(x)
be the code of x and fi be the response value of x with respect
to ci .

Hard-assignment coding. Hard-assignment coding [13] (also
known as vector quantization (VQ)) is a representative of voting-
based methods. When encoding the feature x, HC assigns it to
the nearest visual word in the codebook under a certain metric.
It means there is only one non-zero element in f . fi satisfies

fi =

⎧
⎨

⎩

1, if i = arg min
i ′=1,2,...,N

‖x − ci ′ ‖2
2

0, otherwise
(1)

when L2 metric is used.
Locality-constrained linear coding. Locality-constrained

Linear Coding [14] is a typical example of reconstruction-based
methods. Unlike traditional sparse coding methods, LLC em-
phasizes the importance of locality instead of sparsity, since lo-
cality must lead to sparsity but not necessary vice versa. Specif-
ically, LLC solves the following optimization:

min ‖x − Cf‖2
2 + λ ‖d � f‖2

2

s.t. 1Tf = 1. (2)

d ∈ RN is the locality adaptor defined as

d = exp
(

dist(x, C)
σ

)

(3)

where dist(x, C) is the Euclidean distance between x and each
visual word ci ∈ C. σ is used to adjust the weight decay speed
for the locality adaptor. An approximated solution of LLC is
proposed in [14] to improve the computational efficiency.

Salient coding. Salient Coding [20] is a representative method
of saliency-based methods. SC deems that saliency is a funda-
mental property in coding, and defines a “saliency” degree based
on the nearest visual word of x. Assume {ci ′ }i ′=1,...,k is the set
of k-nearest visual words to x, then

fi =

⎧
⎨

⎩

Φ(x, ci), if i = arg min
i ′=1,2,...,N

‖x − ci ′ ‖2
2

0, otherwise
(4)

where Φ(·) is a monotonically decreasing function, usually de-
fined as

Φ(x, ci) = 1 − ‖x − ci‖2
1

k−1

∑k
i ′ �=i ‖x − ci ′ ‖2

. (5)

Vector of local aggregated descriptors. Vector of Local Ag-
gregated Descriptors [27], [32] aggregates the features based on
a locality criterion in the feature space, which is defined as

fi =

{
x − ci, if i = arg min

i ′=1,2,...,N
‖x − ci ′ ‖2

2

0, otherwise.
(6)

Note that fi is a vector in d dimension.
A very similar idea can be found in [19], where Super Vector

Coding (SVC), a representative of local tangent-based meth-
ods, is proposed. SVC considers feature coding as a manifold
approximation problem using the visual words by assuming
that all features constitute a smooth manifold. Slightly different
from VLAD, SVC adds an extra scalar constant into f and cross-
validation on the training set is needed to determine the value
of the scalar. Considering the simplicity of VLAD, we adopt



BAI et al.: MSRM FOR IMAGE CLASSIFICATION AND VECTOR COMPRESSION 1353

VLAD to get a compact representation for images throughout
our experiments.

Improved fisher kernel. Improved Fisher Kernel [18] is a rep-
resentative of fisher coding-based methods. In IFK, the prob-
ability density distribution of the features is described by the
Gaussian mixture models (GMM). Assume θi = {wi, μi,Σi}
denotes the parameters, i.e., the weight, the mean vector and the
covariance matrix, of the ith Gaussian distribution, then

fi = [Gu,i ,GΣ ,i ]

Gu,i = riΣ
− 1

2
i (x − μi)/

√
wi

GΣ ,i = ri

(
(x − μi)Σ−1

i (x − μi)
)
/
√

2wi

ri =
wip(x|θi)

∑N
i ′=1 wi ′p(x|θi ′)

(7)

where p(x|θi) describes the probability estimation of x to the
ith Gaussian.

B. Vector Compression Strategies

Based on the universal codebook, encoding strategies offer
a way to represent features with codes. When the code f only
contains 0 or 1, we can compress floating-point features into
only a few bytes. In this case, among all the encoding strategies
in Section II-A, only vector quantization defined in (1) can be
applied to vector compression task.

However, as suggested in [9], directly using vector quanti-
zation to learn the compression model on large scale data is
infeasible in practice. To this end, product quantization [9] de-
composes the input vector into several sub-vectors of equal
length, and all the sub-vectors are quantized separately us-
ing standard vector quantization. In [33], an optimized version
of product quantization (OPQ), called Cartesian K-Means, is
proposed.

Different from PQ and OPQ that work on sub-vectors, Addi-
tive Quantization [29] uses the sum of multiple codewords, each
from one sub-codebook, to approximate the input vector. A sim-
ilar idea can be found in [34]. AQ achieves better performances
than PQ, but its optimization in the procedure of codebook con-
struction and encoding is shown to be time-consuming. The
proposed MSRM shares a similar principle with AQ, but the so-
lution of MSRM is more accurate and efficient as demonstrated
in the experiments.

III. MULTIPLE STAGE RESIDUAL MODEL

In this section, a brief introduction to the preliminary knowl-
edge is given firstly in Section III-A, where MSRM are derived.
In Section III-B, we present the basic idea of MSRM and show
how to build image-level representations using MSRM by in-
corporating various coding strategies. Section III-C exhibits the
corresponding codebook learning algorithm. At last, MSRM
is proven suitable for vector compression theoretically in
Section III-D.

A. Preliminary

Multiple Stage Vector Quantization (MSVQ) [35] is a clas-
sic channel coding algorithm commonly used in Digital Voice
Processing.

The theory of MSVQ is as follows: 1) consider an input signal
represented by a vector x ∈ Rd and the multiple stage codebook
C = {C1 , C2 , . . . , CM }, where M is the number of stages. Each
component Cj (1 ≤ j ≤ M) is the sub-codebook in the jth stage
of C with N entries {cj

1 , c
j
2 , . . . , c

j
N }; 2) denote x as x1 for

notation convenience. When x1 is fed into the first stage C1 ,
the codeword c1

i with the minimum distortion is determined,
and the subscript i, as well as the stage number 1, is passed
into channel; 3) the input of the next stage, i.e., the second
stage, is the residual vector x2 = x1 − c1

i . Following the same
principle, c2

i is determined again; 4) the procedure of 2), 3) is
iteratively conducted, until reaching the final stage; 5) in the
receiving terminal, the decoder reconstructs the signal by using
the subscripts and the multiple stage codebook.

MSVQ is developed to reduce computation complexity via
replacing a single codebook with several cascaded and much
smaller codebooks. The key characteristic of MSVQ is quan-
tization on residual vectors. In this paper, we give a thorough
study about such a property with applications to image classi-
fication, vector compression and approximate nearest neighbor
search.

Indeed, many advanced encoding methods can be used despite
vector quantization. Based on MSVQ, we propose a generic
model called Multiple Stage Residual Model, in which many
state-of-the-art encoding methods can be embedded. Hence,
MSVQ becomes a special case of MSRM when the encoder
is vector quantization.

B. Extension to Generic Model

Although vector quantization is an efficient coding method
both in speed and memory usage, it leads to severe quantization
error and achieves inferior performances in many tasks.

As presented in Section II, various advanced coding strategies
are proposed. In order to embed these coding strategies with our
proposed model, we separate the quantization procedure from
the feature coding procedure. Specifically, for a given feature
x, on the one hand we only consider the nearest visual word to
compute the residual vector and pass the residual vector to the
next stage, which is the new feature vector to be encoded in the
next stage. On the other hand, we do not restrict the way and
the number of the visual words used to generate the code for
x, which is usually determined by the encoder function ϕ. The
pseudocode of multiple stage coding procedure is presented in
Algorithm 1.

For example, if LLC [14] is chosen as the encoder ϕ of
MSRM, we use k (k is usually set to 5) visual words to encode
x, and use only the nearest visual word to generate the residual
vector. Our interpretation is that the nearest visual word to x
captures its main pattern, and all the local image descriptors
lying in the same cluster will eliminate the information redun-
dancy if all of them are deprived with their common pattern. The
operations of computing the residual vector and encoding the
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Fig. 1. Pipeline of MSRM. The input x1 = x is the feature to be encoded. Cj (1 ≤ j ≤ M ) is the jth sub-codebook. The encoder function ϕ can vary.
f j (1 ≤ j ≤ M ) is the encoded feature via the encoder. The final representation of x is the concatenation of the output from all stages.

Algorithm 1: Multi-stage Encoding.
Input: The feature x to be encoded; the encoder ϕ; the

multi-stage codebook C = {C1 , C2 , . . . , CM }, where
Cj = {cj

1 , c
j
2 , . . . , c

j
N }.

Output: The code f = [f 1 , f 2 , . . . , fM ] of x.
1: initialize x1 = x;
2: for each j ∈ [1,M ] do
3: use Cj for coding: fj = ϕ(xj );
4: quantization of xj : i = arg min

i ′
‖xj − cj

i ′ ‖2 ;

5: compute the residual vector: xj+1 = xj − cj
i ;

6: end for
7: concatenate f = [f 1 , f 2 , . . . , fM ];

feature are iteratively conducted until the final stage is reached.
The pipeline of Multiple Stage Residual Model is illustrated in
Fig. 1.

According to the taxonomy presented in [1], we introduce
some typical coding strategies as the encoder function ϕ to
our proposed model, including Hard-assignment Coding [13],
Local-constrained Linear Coding [14], Salient Coding [20],
Vector of Local Aggregated Descriptors [27] and Improve Fisher
Kernel [18].

Two noteworthy comments on IFK should be made here.
When IFK is selected as the encoder ϕ of MSRM. 1) The code-
book used for encoding the features are GMM, learned using
expectation maximization (EM), i.e., θj

i = {wj
i , μ

j
i ,Σ

j
i }, 1 ≤

j ≤ M, 1 ≤ i ≤ N . 2) To compute the residual vector for the
input xj in the jth stage, only the mean vector μj

i of the Gaussian
distribution with the largest p(xj |θj

i ) is considered. Specifically,
xj+1 = xj − μj

i and i = arg maxi ′ p(xj |θj
i ′).

For image classification task, all the generated codes of lo-
cal descriptors from a certain image are pooled together (max-
pooling or sum-pooling) to get the final representation of the
image. As shown in Section IV, the codes from different stages
are greatly complementary to each other. If the classifier cannot

give the image a right label prediction with the codes from a
certain stage, the prediction can be revised with the usage of the
codes from other stages in most cases.

C. Codebook Learning

Codebook learning is a necessary step before encoding the
features. There are various codebook learning algorithms in un-
supervised way [36], weakly-supervised way [37], or supervised
way [38], [39].

Among all the codebook learning algorithms, K-means is
probably the most widely used one for its simplicity and sta-
bleness. Given a randomly selected subset X of training fea-
tures and the codebook size N , K-means seeks N vectors
C = [c1 , c2 , . . . , cN ] iteratively, and minimizes the approxima-
tion error E defined as

E =
∑

x∈X
‖x − ci‖2 (8)

x → ci = arg min
c∈C

‖x − c‖2 . (9)

Our proposed model adopts k-means in a greedy manner to
learn a multiple stage codebook C = {Cj , 1 ≤ j ≤ M}, i.e., we
minimize the approximation error and do clustering process
stage by stage. Only when the clustering in jth stage ends,
the clustering in (j + 1)th stage begins. It indicates that the
multiple stage codebook is not trained independently, instead,
the training of latter stage requires the output of the former
stage as its input. The pseudocode of multiple stage codebook
construction is presented in Algorithm 2.

For the sake of convergence efficiency of K-means, we use
triangular inequalities to reduce the operation of sample-to-
center comparisons if possible. In practice, for each stage we
run K-means three times, and the generated cluster centers with
the minimum approximation error are chosen as the codebook.

Note that the codebook learning is different when IFK is
chosen as the encoder of MSRM, since the codebook is GMM.
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Algorithm 2: Multi-stage Codebook Learning with
K-means.
Input: The traning features X for codebook learning; The

codebook size N ; The number of stage M .
Output: The learned multi-stage codebook

C = {C1 , C2 , . . . , CM }.
1: initialize X 1 = X ;
2: for each j ∈ [1,M ] do
3: do clustering on X j through Eq. (8) and Eq. (9);
4: and output the cluster centers Cj ;
5: for each xj ∈ X j do
6: i = arg min

i ′
‖xj − cj

i ′ ‖2 ;

7: xj+1 = xj − cj
i ;

8: end for
9: end for

Fig. 2. Illustration of approximation. By removing rM (x), the original vector
x can be approximated by x̃.

In the jth stage, we train the GMM codebook using EM on X j .
Then for each xj ∈ X j , only the mean vector μj

i of the Gaussian
distribution with the largest p(xj |θj

i ) is considered to compute
the residual vector.

D. Vector Compression Using MSRM

When vector quantization is chosen an the encoder, MSRM
degenerates to MSVQ that can be directly used for vector
compression.

Given a vector x ∈ Rd , the code fj generated by MSRM
records the index of the nearest codeword to x in the jth stage.
In other words, MSRM actually represents x using a sum of M
codewords, with each codeword from one stage of the multiple
stage codebook. Then x can be represented by

x = rM (x) + x̃ (10)

where rM (x) represents the residual vector of x in the final
stage, and the approximated x is defined as

x̃ =
M∑

j=1

cj
ij

, ij ∈ [1, N ] (11)

where cj
ij

denotes the ij th codeword in the jth stage. An illus-
tration of this approximation is given in Fig. 2. As a result, the
original vector x can be compressed into NByte bytes that store
the indices of entries in the multiple stage codebook, where

NByte is determined by

NByte =
M log2 N

8
. (12)

Using the same number and the same size of sub-codebook,
MSRM shares the same compression rate with product quan-
tization [9], optimized product quantization [33], and additive
quantization [29].

We now discuss the asymmetric distance computation (ACD)
between a given query vector q and a certain vector x in the
database compressed by MSRM. The Euclidean distance is de-
fined as

‖q − x‖2
2 = ‖q‖2 + ‖x‖2 − 2〈q, x〉 (13)

in which ‖q‖2 and ‖x||2 denote the square norm of q and x
respectively, and 〈q, x〉 calculates their inner product.

Note that ‖q‖2 is only determined by the query side, so we
need to compute it on-the-fly and used repeatedly. However ‖q‖2

does not influence the ranking of the database vectors actually,
and we can ignore this item if we only want to know the retrieved
order, but do not need their distances to q. As a result, we only
need to determine ‖x‖2 and 〈q, x〉 now.

Assuming that x is compressed by MSRM, then

‖x‖2 ≈ ‖x̃‖2 = ‖
M∑

j=1

cj
ij
‖2 =

M∑

j=1

M∑

j ′=1

〈cj
ij

, cj ′

ij ′
〉 (14)

which is an independent operation of the query q. We can pre-
compute the inner product of all the pairs of codewords that
come from different stages, and store them as a lookup table
in memory. The space complexity of this storage is O(M 2N 2),
and it is reduced to O(MN(M + 1)(N − 1)/4) if the symmetry
property of distance is considered. Then, it needs O(M(M +
1)/2) lookups and O(M(M + 1)/2) additions to calculate the
approximated square norm of x.

The inner product 〈q, x〉 is approximated by

〈q, x̃〉 =

〈

q,
M∑

j=1

cj
ij

〉

=
M∑

j=1

〈q, cj
ij
〉. (15)

For a given query, all the above items should be computed on-
line. Since it is an inner product of two vectors, its computational
cost is tiny.

Compared with PQ and APQ that deal with sub-vectors,
MSRM directly works on the full vector by subtracting the
residual iteratively. Although such a paradigm leads to higher
memory usage (e.g., the space complexity for the codebook stor-
age in MSRM is O(DNM), while that in PQ is O(ND)), such
extra minor cost can be tolerable. On the other hand, MSRM can
be a very flexible quantizer, i.e., the number of sub-codebook
M is independent of the input feature dimension D, while M
must be a submultiple divisor of D in the case of PQ and OPQ.

Both AQ and MSRM share the same principle that each vec-
tor is approximated by the sum of M codewords from differ-
ent sub-codebooks. However, the primary difference is that AQ
considers each sub-codebook equally. By contrast, in MSRM,
the sub-codebooks at the bottom layer are used for the coars-
est quantization while those at the top layer are used for the
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finest quantization. Moreover, AQ uses Beam Search algorithm
for codebook learning and vector quantization, which is time-
consuming. By contrast, MSRM adopts a greedy method derived
from K-means, which enables efficient quantization.

Moreover, the flexibility of MSRM also lies in that we can
achieve the desired compression rate according to the require-
ments of specific cases, by simply cutting off the later stage of
MSRM without re-training, while PQ, OPQ and AQ all need
re-train the quantization models.

Note that we can use more advanced encoding methods
(e.g., Sparse Coding). However, these methods usually leads
to codes in the float format instead of integer format, thus occu-
pying more memory usage. Hence those encoding methods are
usually not acceptable in vector compression task.

IV. EXPERIMENTS

In this section, we evaluate the effectiveness of MSRM with
applications to image classification, vector compression, ap-
proximate nearest neighbor search and shape recognition.

A. Image Classification

Different from previous works [29] that focus on image classi-
fication with limited memory usage, we address the complemen-
tarity of the codes generated from multiple stages for accurate
image classification.

1) Implementation Details: If not specified, we adopt the
following setup for all our experiments.

In order to get a proper assessment of MSRM, we re-
implement the baselines of HC [13], SC [20], LLC [14],
VLAD [27] and IFK [18] according to the following experi-
mental setup. The comparisons to the results reported in the
original papers are also given below.

Feature extraction. The standard dense SIFT is extracted on a
patch size 32 × 32, with step size fixed to 4 pixels, by using the
vl dsift command available in the public toolbox VLFeat [40].

Codebook generation. According to Algorithm 2, we learn a
multiple stage codebook using the training set. The codebook
size depends on the encoder plunged into MSRM. In particular,
HC, LLC and SC adopt a relatively larger codebook with a
size of 1024 on all datasets, except for Caltech-256 where 4096
codes are used following [16]. As for VLAD and IFK, 256 codes
are used in Caltech-256 and 64 codes for the other datasets.

Coding and pooling. As for the implementation of VQ, LLC,
SC and IFK, we use the codes released by Huang in [1] to encode
the local features. In order to include the spatial information,
SPM [13] with 3 levels: 1 × 1 , 2 × 2 and 4 × 4 is adopted with
a same weight for each level. We implement the VLAD encoder
using vl vlad function in VLFeat, and no spatial information
is included. The max-pooling operation is performed with LLC
and SC. HC, VLAD and IFK use the sum-pooling operation.
Classifier. Linear SVM, implemented by Liblinear toolbox [41],
is used. We set the penalty parameter in SVM to 10.
Databset and Setup. Four databsets are used:

1) Scene-15 dataset [13]: it contains 15 categories and
4485 images, with 200 to 400 images per category. The
categories vary from indoor scenes like bedrooms, to

outdoor scenes like mountains. Based on the common
experimental setting, 100 images per category are taken
as training data, and the rest are used for testing.

2) UIUC 8-Sport [42]: it is particularly collected for image-
based event classification, and it consists of 1579 images
grouped into 8 sport categories: badminton, bocce, cro-
quet, polo, rock climbing, rowing, sailing and snow board-
ing. According to the standard setup for classification, we
use 10 splits of the data, and random select 70 images
from each category for training and 60 images for testing.
The average accuracy, as well as the standard deviation,
is reported.

3) Caltech-101 dataset [43]: it consists of 101 object cate-
gories including animals, faces, plants etc, with 31 to 800
images per category. Following the standard experimental
setting, we use 10 random splits of the data, while taking
30 random images per class for training and the rest for
testing.

4) Caltech-256 dataset [44]: it is a more challenging dataset
than Caltech-101 dataset, which contains 29, 780 objects
divided into 256 categories including a background cate-
gory. The conventional experimental setup is that random-
selected 30 images per category are used for training and
the rest for testing.

Images are resized to no more than 300 × 300 on all datasets
except for UIUC 8-Sport, since images on this dataset have
higher resolutions. We keep the maximum image size of UIUC
8-Sport dataset 400 × 400.

2) Experimental Comparison: As we can draw from
Fig. 3(a), MSRM can significantly improve the performance
compared with the original state-of-the-art coding algorithms
on Scene-15 dataset. Generally, the classification accuracy im-
proves as the stage number increases. It gets saturated when
the stage number comes to 5. The classification accuracy is
increased by 6.94% for HC, 2.90% for LLC, 4.79% for SC,
9.67% for VLAD and 1.23% for IFK when MSRM sets the
stage number to 5. We can also find that our proposed model is
especially suitable for HC and VLAD. The reason might be that
both HC and VLAD only consider the nearest visual word in
the codebook to encode a local feature, and our proposed model
can boost their performances largely by making use of the com-
puted residual vector. In comparison, LLC, SC and IFK take
into account the contributions from more than one visual word,
so the improvements of MSRM with LLC, SC and IFK are not
as obvious as that with HC and VLAD, but are still convincing.

In Fig. 3(b), (c) and (d), we plot the performances of MSRM
on the UIUC 8-Sport dataset, the Caltech-101 dataset and the
Caltech-256 dataset respectively. Similar to our experiments in
the previous dataset, MSRM improves our selected encoders
significantly, e.g., on the Caltech-101 dataset, MSRM improves
the performance of HC by 5.07%, LLC by 3.47%, SC by 5.33%,
VLAD by 7.02% and IFK by 4.44%.

The comparison with other algorithms is given in Table I.
All the results presented in the table are reported by author
themselves or quoted from the survey paper [1]. As can be seen,
our proposed method also obtains competitive performances
against many state-of-the-art algorithms.
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Fig. 3. Experimental results of MSRM with different encoders on (a) Scene-15 dataset, (b) UIUC-8 Sport dataset, (c) Caltech-101 dataset, and (d) Caltech-256
dataset. The x-axis denotes the stage number M in MSRM, and the y-axis denotes the classification accuracy.

TABLE I
COMPARISON OF CLASSIFICATION ACCURACIES

Algorithms Scene-15 UIUC 8-Sport Caltech-101 Caltech-256

HC [13] 78.87 ± 0.52 79.98 ± 1.67 69.43 ± 0.52 21.82 ± 0.22
LLC [14] 80.50 ± 0.63 81.77 ± 1.51 71.67 ± 0.86 37.41 ± 0.21
SC [20] 82.55 ± 0.41 85.44 ± 1.54 69.55 ± 0.83 34.60 ± 0.27
LCSRC [17] 82.67 ± 0.57 87.23 ± 1.14 73.23 ± 0.81 –
LSC [15] 82.70 ± 0.39 82.29 ± 1.84 72.58 ± 1.08 38.15 ± 0.26
LRSC [16] – 88.17 ± 0.85 75.02 ± 0.74 41.04 ± 0.23
MOC [47] 83.38 ± 0.20 – 72.97 ± 0.80 –
SVC [19] 84.90 ± 0.52 – – –
IFK [18] 87.00 ± 0.36 – – 47.40 ± 0.10
HC [13] + MSRM 83.25 ± 0.50 84.35 ± 1.16 61.88 ± 1.15 34.76 ± 0.26
VLAD [27] + MSRM 84.03 ± 0.64 89.09 ± 0.96 76.59 ± 0.51 39.31 ± 0.25
SC [20]+MSRM 84.62 ± 0.61 89.07 ± 1.49 71.73 ± 1.47 38.57 ± 0.25
LLC [14] + MSRM 85.42 ± 0.72 88.46 ± 1.13 76.56 ± 0.90 44.47 ± 0.32
IFK [18] + MSRM 87.51 ± 0.43 89.90 ± 1.00 77.60 ± 0.67 47.18 ± 0.19

On the Scene-15 dataset, the accuracy of our implementation
for HC is much lower than that in [13], MSRM also enhances its
discriminative power, and even outperforms the performances of
LLC and SC. As for SC, Huang et al. [20] report a higher clas-
sification accuracy due to the use of multi-scale dense SIFT and
a larger codebook. The baseline performance of IFK is 86.28%,
slightly lower than that reported in [1]. However, MSRM with
IFK as the encoder can easily achieve the best performance
among all the compared algorithms. One should note that the
performance of MSRM, as well as many other coding meth-
ods, can be improved easily by merely sampling image patches
more finely as stated in [45]. Compared with the setup (extract-
ing SIFT using 32 × 32 patches) of MSRM, all the experiments

in [1] are done by extracting SIFT more densely (16 × 16, 24
× 24, 32 × 32), which generates much more descriptors.

On the UIUC 8-Sport dataset and the Caltech-101 dataset,
the performances of MSRM are better than many coding meth-
ods [13]–[15], [17], [20]. MSRM even outperforms Low Rank
Sparse Coding [16], which achieves the state-of-the-art perfor-
mance recently.

On the challenging Caltech-256 dataset, the performance of
IFK reported in [18] is 40.80%, which is lower than the best
performance of MSRM. By extracting SIFT at 5 scales, Sanchez
et al . [46] report 47.40% accuracy for IFK, still comparable with
the performance 47.18% of MSRM.

Multi-layer orthogonal codebook (MOC) [47] is also a mul-
tiple layer encoding method which uses the orthogonal residual
vectors. Its best performance is merely 83.38% on the Scene-
15 dataset and 72.97% on the Caltech-101 dataset, achieved by
integrating some additional techniques (e.g., kernel fusion and
soft weighting).

3) Discussion: The complementary nature of codes from
different stages, as well as the codebook size and the influence
of power normalization, is discussed in this section.

The complementarity of codes. We observe that the output
of each stage in MSRM is complementary to each other, and
the powerful classifier SVM is able to select several distinctive
stages to distinguish images from different categories.

In order to prove our conjecture, we conduct an interesting
experiment shown in Fig. 4. Here we set the encoder of MSRM
as VLAD, and the features from each stage in MSRM form
the training set and the testing set. We select one misclassified
image per category, and find that although the classifier cannot
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Fig. 4. Some misclassified images on the UIUC 8-sport dataset. The “Category” in the first row indicates the ground truth of the image, and the third to the
seventh row present the predicted label that SVM outputs based on the features of each stage in MSRM. The last row shows the result when we concatenate the
features from all stages in MSRM. The red box means a false prediction, and the green box means a correct prediction.

TABLE II
COMPARISON BETWEEN MSRM AND THE SINGLE-STAGE

CODING STRATEGY UNDER THE SAME FEATURE

DIMENSION ON THE SCENE-15 DATASET

M 1 2 3 4 5

VLAD 74.36% 78.15% 79.35% 80.14% 80.18%
MSRM 74.36% 80.77% 82.59% 83.53% 84.03%

give a correct recognition according to the features from 1-st
stage in MSRM, i.e., the original coding strategy, it can revise
its prediction result with more complementary information from
the latter stages in MSRM. For example, the image from Rowing
category in the seventh column of Fig. 4, is misclassified as
snowboarding in the first stage and sailing in the second stage.
However, it obtains a correct labeling in the third stage and the
fourth stage. When combining the features from all stages, the
false prediction is corrected as shown in the last row. The last
column presents an image from snowboarding is misclassified
in the second, third and fifth stage, but is assigned a right label
if the features from all the stages are combined together. This
phenomena reveals the robustness of our proposed model.

To further confirm the complementarity between the features
from each stage of MSRM, we compare our proposed MSRM
with a single stage coding strategy in the same feature dimen-
sion. Specifically, Scene-15 dataset is used and VLAD is se-
lected as the encoder. For MSRM, the codebook size in each
layer of MSRM is 64, and the stage number M ranges from 1
to 5. Hence the feature dimension of MSRM for an image is
128 ∗ 64 ∗ M . For the single stage coding, the codebook size
is set directly to 64 ∗ M (1 ≤ M ≤ 5). Hence the final feature
dimension for an image is also 128 ∗ 64 ∗ M . The results are
presented in Table II, which suggest that MSRM works signifi-
cantly better than only single stage coding.

Codebook size. The size of codebook is crucial for the classi-
fication accuracy. It has been proven that a better performance
can be achieved by using a relative larger codebook. However,

Fig. 5. Influence of codebook size on classification accuracy.

Fig. 6. Influence of power normalization.

overfitting effect, leading to the plateau of performance curves,
occurs when the codebook size keeps increasing. In Fig. 5, we
plot the influence of codebook size when setting the encoder of
MSRM as VLAD, and the stage number M varying from 1 to
5. It can be found that the classification accuracy gets saturated
when the codebook size is 256.

Power normalization. After pooling step, the generated codes
are usually L2-normalized. However, in some cases, some ex-
tremely large elements in the code dominate the similarity cal-
culation with other images, so that the contribution of other
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Fig. 7. Comparison of quantization error (×104 ) on the SIFT1M dataset. The size of sub-codebook is set to (a) 64, (b) 128, and (c) 256.

important dimensions is restrained. In order to remedy this,
power normalization, i.e., square root, is used before the final
L2 normalization, as suggested in [18].

In Fig. 6, we give the influence of power normalization on the
Scene-15 dataset. We follow the default setting for codebook
size, and the stage number of MSRM is 2. As the figure shows,
power normalization is more effective to improve the perfor-
mance when the encoder of MSRM (e.g., HC, VLAD and IFK)
uses sum-pooling. It is easy to understand, since sum-pooling is
more likely to produce extreme large values than max-pooling.

B. Vector Compression

Quantization error. We give a thorough comparison on quan-
tization error with some state-of-the-art algorithms, includ-
ing product quantization [9], the optimized product quantiza-
tion [33] and additive quantization [29].

Two datasets, SIFTIM [9] and GIST1M [9], are used for
evaluation.

a) SIFT1M: It consists of 1M SIFT [28] descriptors in single
format of 128 dimension, and 10K descriptors are consid-
ered as the query. 100K independent descriptors are used
for codebook learning task.

b) GIST1M: It consists of 1M GIST descriptors in single
format of 960 dimension, and 1K descriptors are consid-
ered as the query. 500K independent descriptors are used
for codebook learning task.

In Fig. 7, we compare the mean approximation error when
the stage number M varies from 2 to 16. Several observations
are made.

1) In general, MSRM achieves the lowest quantization error
compared with other algorithms.

2) When a coarse quantization is applied (i.e., N is 128 and
M is 2), the advantage of MSRM over other methods is
more obvious.

3) When M is 16 and N = 256, the mean quantization error
of MSRM is slightly higher to that of AQ and OPQ.

4) Although AQ has a same optimization objective as
MSRM, but the solution of MSRM is more accurate,
which demonstrates the benefit of using the residual vec-
tors stage by stage.

Fig. 8. Influence of codebook size on mean quantization error on the SIFT1M
dataset.

TABLE III
COMPARISON OF QUANTIZATION ERROR

UNDER THE SAME EXTRA COST (×104 )

N 64 128 256 512

VQ 6.173 5.802 5.475 5.214
MSRM 5.424 4.964 4.577 4.268

In order to directly illustrate the influence of codebook size,
we give a comparison in Fig. 8. As can be seen, larger code-
book naturally leads to lower mean quantization error. We also
find that with the same compression rate, it is more beneficial
to use smaller codebooks with deeper stage. For example, The
codebook storage and the compression rate is the same when
M = 2, N = 256 and M = 4, N = 128. However, the quanti-
zation error of the former parameter setup is much higher than
that of the latter one. The extreme case of MSRM, i.e., M = 1,
is vector quantization. Its performance is also presented in Fig 8.

In order to present the difference of quantization error be-
tween VQ and MSRM more clearly, a comparison is given
in Table III. We use two stages for MSRM, and set the sub-
codebook size to N . For VQ, the codebook size is set to 2N .
Consequently, the extra cost of codebook storage is kept the
same. As we can see from the table, MSRM leads to less
information loss than VQ under the same extra cost, which
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Fig. 9. Comparison of recall on the SIFT1M dataset and GIST1M dataset. The size of sub-codebook N is set to 256, and the number of sub-codebook M is 2
for (a) and (c), 4 for (b) and (d).

demonstrates again the effectiveness of our proposed hierarchi-
cal structure.

ANN Search. We also use SIFT1M dataset and GIST1M
dataset to evaluate the performance in approximate nearest-
neighbor search. Here we only consider Asymmetric Distance
Computation, i.e., only the database is quantized and the query
remains uncompressed. The performance measure is recall@T
(for varying values of T , the average rate that the true 1-nearest
neighbor is ranked in the top T positions). In Fig. 9, we give a
comparison when N is set to 256, and M is set to 2 or 4. The
former setup only requires 2 byte per vector for storage, and the
latter one uses 4 byte according to (12).

As can be seen in Fig. 9(a) and (b), MSRM achieves the
best overall performance compared with PQ, OPQ and AQ on
SIFT1M dataset. Consistent with the previous analysis in quan-
tization error, the performance difference between MSRM and
other methods is more distinctive when a coarse quantization is
used. This is easy to understand, since the quantization error is
the upper bound of the approximation of asymmetric distance
computation as |‖q − x‖2 − ‖q − x̃‖2 | ≤ ‖x − x̃‖2 . The supe-
rior performance of MSRM in coarse vector compression makes
it very suitable for the applications in mobile device, where the
storage space is limited. On GIST1M dataset, OPQ, AQ and
MSRM achieve comparable performances, probably due to the
complex structure of vectors brought by the high dimension of
GIST feature.

In Table IV, we compare the time cost of difference methods
in codebook learning procedure and vector encoding procedure
on SIFT1M dataset. The number of sub-codebook M is 4 and the
size of sub-codebook is 256. The algorithms are implemented
in Matlab with some utilities written in MEX files. All the ex-
periments, except for AQ, are carried out on a desktop machine

TABLE IV
COMPARISON OF RUNNING TIME

Codebook Learning Vector Encoding

PQ 85.46 s 24.22 s
OPQ 93.13 s 24.35 s
AQ ≈ 1 h ≈ 4 h
MSRM 146.71 s 26.18 s

with an Intel(R) Core(TM) i5 CPU (3.40 GHz). Considering
the low efficiency of AQ, the experiment of AQ is done on a
computing server with Intel(R) CPU E5-2609 with 8 paralleled
computing core. As can be seen from the table, PQ is the most
efficient method, since it works on sub-vectors and does not in-
clude any complicated optimization. The time cost of MSRM is
slightly larger than PQ, but achieves much better performances
as presented in the previous section.

C. Shape Recognition

Shape recognition [48], [49] is an appealing task, which
attracts lots of attention for a long time. Some representative
algorithms [50], [51] proposed recently also adopt coding-based
framework for robust and efficient classification. Consequently,
MSRM can be also applied to this task easily.

MSRM is evaluated on MPEG-7 dataset [31]. MPEG-7
dataset consists of 1400 silhouette images divided into 70
classes, with 20 shapes per category. Some representative shapes
are given in Fig. 10. Following the conventional setup on this
dataset, half shapes per category are used for training, and the
remaining shapes are used for testing. We repeat the testing and
training procedure for 5 times.
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Fig. 10. Typical shapes from the MPEG-7 dataset. One shape per category is
represented.

TABLE V
PERFORMANCE COMPARISON ON THE MPEG-7 DATASET

Methods Original MSRM

HC 95.80 ± 0.75 97.08 ± 0.38
SC 96.57 ± 0.54 97.20 ± 0.29
LLC 96.94 ± 0.63 97.51 ± 0.77
IFK 97.15 ± 0.40 97.80 ± 0.43
VLAD 96.45 ± 0.30 98.00 ± 0.70
BCF [50] 97.16 ± 0.79
Class Segment Set [54] 90.9
Contour Segments [55] 91.1
Skeleton Paths [55] 86.7
ICS [55] 96.6

The raw descriptor used here is contour fragment developed
in [50], which serves as a baseline method. First, we obtain lots
of contour fragments by tracing a pair of vertices, and these
vertices are generated by applying Discrete Contour Evolution
(DCE) [52] to the outer contour of shape. Then for each contour
fragment, 5 reference points are set evenly along the fragment,
and described by Shape Context (SC) [53]. At last, each contour
fragment is represented by the concatenation of the five shape
context features.

The codebook is learned only on the training set. The size of
sub-codebook for HC [13], LLC [14] and SC [20] is 1000, and
that for VLAD [27] and IFK [18] is 20. The stage number
M is set to 2. Different from BCF [50], we do not apply
SPM [13] to preserve the spatial arrangement of these con-
tour fragments, since we experimentally find that MSRM can
already achieve the state-of-the-art performances with only such
a coarse-to-fine coding framework.

The performance comparison of MSRM with other repre-
sentative algorithms is given in Table V. The special case of
M = 1 of MSRM is referred to “Original” in the table. We can
find only 2 stages can increase the performance of the original
coding methods significantly. When VLAD is chosen as the en-
coder of MSRM, we also report the highest performance 98.00
± 0.70, which outperforms the new state-of-the-art algorithm
BCF [50] by a large margin. When power normalization is used,
no obvious improvements are observed.

V. CONCLUSION

In this paper, we propose a generic model called Multiple
Stage Residual Model to make full use of the residual vector,
while many coding algorithms focus on reducing it. MSRM has
been proven effective in improving the performance of many
state-of-the-art coding algorithms further in image classification

and shape recognition task. As a special case, MSRM with VQ as
the encoder can be adjusted to vector compression, and exhibits
competitive performances against other classic algorithms, such
as product quantization. In the future, we will study how to
incorporate the spatial consistency with MSRM in a proper
way.

In recent years, deep learning approaches (e.g., Convolutional
Neural Network [56]) have demonstrated its superiority in im-
age classification task with the help of large amounts of train-
ing images. It can be expected that the combination of those
deep learning approaches and conventional feature coding ap-
proaches can yield better performances in many computer vision
tasks.
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