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The paradigm of Convolutional Neural Network (CNN) has already shown its potential for many challeng-

ing applications of computer vision, such as image classification, object detection and action recognition. In

this paper, the task of 3D model retrieval is addressed by exploiting such promising paradigm. However, 3D

models are usually represented with a collection of orderless points, lines and surfaces in a three dimensional

space, which makes it difficult to involve the operation of convolution, pooling, etc. Yet, we propose a practical

and effective way for applying CNN to 3D model retrieval, by training the network with the depth projections

of 3D model. This CNN is regarded as a generic feature extractor for depth image. With large amounts of train-

ing data, the learned feature, which is called Neural Shape Codes, can handle various deformation changes

that exist in shape analysis. The reported experimental results on several 3D shape benchmark datasets show

the superior performance of the proposed method.

© 2015 Elsevier B.V. All rights reserved.
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. Introduction

The increasing availability of RGB-D consumer sensors makes

ossible to handle 3D models using just a laptop, tablet or mobile

erminal. Lots of large public-domain databases, such as Google

D Warehouse, make 3D analysis a popular task, and increase the

emand for efficient 3D model retrieval techniques. Given a query

D model, the aim of retrieval is to find the most similar models in

he database. The pairwise similarity is usually computed using a

ertain metric in the feature space, and candidate models are ranked

y visual appearance with the query.

In recent years, different algorithms and features have been pro-

osed to represent 3D models. These algorithms can be coarsely di-

ided into two categories: model-based algorithms and view-based

lgorithms. For model-based algorithms, some geometric features are

xtracted directly at the object level. The matching between 3D mod-

ls is done by analyzing the correspondences among these features.

ypical model-based methods are Covariance [1], and Curve analysis

2]. View-based methods attract a lot of attention recently. They rep-

esent a 3D model with a collection of 2D views using the format of

epth buffer or binary mask. Thanks to the discriminative 2D views,

iew-based 3D model retrieval algorithms, such as PANORAMA [3],

ight Field Descriptor [4], provide good retrieval performance.

It is worth to note that most of the above algorithms work well

nly for some specific shape deformations (bending, articulation,
✩ This paper has been recommended for acceptance by Dr. A. Koleshnikov.
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otation, etc.). Motivated by the excellent performance of deep learn-

ng in computer vision, we conjecture that Convolutional Neural Net-

orks (CNNs) trained with large amounts of data is a suitable choice,

nd can be used effectively for 3D model retrieval. Moreover, we want

o benefit from the supervised training of CNNs for solving the unsu-

ervised 3D model retrieval task. When the traditional “man-made”

escriptors [5–7] cannot handle well the large inter-class variations

nd the small intra-class variations, we deem that the supervised in-

ormation (or prior information) exploited during the training of CNN

akes the discrimination task much easier. Nevertheless, using CNN

o cope with 3D model retrieval is not an easy task. 3D models are

sually represented by a group of points, lines and surfaces in a three

imensional space, while the input of CNN is usually greyscale images

r color images in a two dimensional space. Our solution for this issue

s very simple yet effective. Instead of taking 3D models as the input

f neural network, we use the projections of 3D models. The projec-

ions are rendered from various locations on the unit sphere in the

ormat of depth buffer. It results that each 3D model is represented

y a set of depth projections. All the depth projections belonging to

he training set are guaranteed to have an equal size, and are used to

rain the Convolutional Neural Network.

For our specific scenario of 3D model retrieval, we assume that

he trained CNN can be regarded as a generic feature extractor for

epth views. The activations obtained by a depth projection of the

nternal layer of CNN are taken as the learned features, which we call

eural Shape Codes (NSC). After computing the Neural Shape Code

or each projection of a 3D model, we take a simple modification

f the Hausdorff distance for multi-view matching and achieve

tate-of-the-art retrieval performance efficiently.

http://dx.doi.org/10.1016/j.patrec.2015.06.022
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Fig. 1. The pipeline of our proposed method.
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Table 1

The architecture parameter setting of Neural Shape Codes

(from the bottom to the top).

Layer Setup

C1 Convolution, kernel 11 × 11, stride 4, ReLU

C2 Convolution, kernel 5 × 5, stride 1, ReLU

C3 Convolution, kernel 3 × 3, stride 1, ReLU

C4 Convolution, kernel 3 × 3, stride 1, ReLU

C5 Convolution, kernel 3 × 3, stride 1, ReLU

FC6 Fully-connected, output 4096, dropout

FC7 Fully-connected, output 4096, dropout

FC8 Fully-connected, output 352
The rest of the paper is organized as follows. The details of the

Neural Shape Codes are given in Section 2. The experimental analysis

and comparisons are reported in Section 3. The conclusions about the

contributions and limitations of our method are given in Section 4.

2. The proposed neural shape codes

In this section, we first give a brief introduction to Convolutional

Neural Network (CNN), then present the procedure of projection ren-

dering, and feature extraction using the trained CNN. The pipeline of

the proposed method is illustrated in Fig. 1.

2.1. Preliminary: CNN for image analysis

Convolutional Neural Network (CNN) is inspired by biological

mechanism and can be assumed as a variant of Multi-layer Percep-

tron (MLP).

CNN is designed to learn the 2D structure of an input image. Gen-

erally, CNN is a hieratical neural network with convolution layers,

pooling layers, fully connected layers. These layers can be considered

as a set of neurons which have learned weights and biases. The

parameters are learned in a data-driven way from large scale images

using back propagation, and the capacity of CNN can be controlled

by varying its depth (e.g. adding or subtracting the layers) or breadth

(e.g. increasing or decreasing the convolutional kernels). Feature

learning and high-level recognition are done simultaneously in CNN

architecture, which is the primary difference against conventional

methods [6,8] that use artificial features. Although CNN typically

contains millions of parameters to tune, the rapid development

of GPU computing devices and some mathematical strategies (e.g.

weight sharing) reduce the training time of CNN dramatically. Hence,

CNN has exhibited great potential and achieved state-of-the-art

performances in various computer vision tasks, such as retrieval,

classification [9], detection, etc.

2.2. Projection rendering

In most cases, the input of CNN is 2D image, and this does not fit

with the fact that 3D models are usually represented by a collection

of points and lines in a three dimensional space. Therefore, applying

CNN directly to 3D model analysis is not a straightforward task. To

tackle this problem, we choose to project 3D models into 2D depth

views.

Before projection rendering, we perform pose normalization for

the 3D model S to get our proposed descriptor invariant to scale

changes. Specifically, we move the center of S to the origin of the

spherical coordinate system, and resize the maximum polar distance

of the points on the surface of shape to unit length. Then we set Nv

view points evenly on the unit sphere located by the azimuth angle

θ az and the elevation angle θ el. θ az is the polar angle in the x–y plane,

and θ is the angle between view point and the x–y plane. At last,
el
or each pair of θ az and θ el, we set a projection plane, and get the

epth values of all the mesh points. The depth values are normalized

o [0, 255] stored in the format of uint8. The numerical setup of the

rojection procedure is given in Section 3.

As a result, each 3D model S is represented by a view set V(S) =
vs1

, vs2
, . . . , vsNv

}. All the depth projections of the training set are

athered to train CNN. The detailed setup of CNN is described in the

ext section.

.3. Feature extraction with CNN

In this work, we use CNN as a generic feature extractor for depth

iews in 3D model retrieval.

Our CNN architecture takes depth images as input. For each depth

mage, we get an activation of the internal layer of CNN along the di-

ection of feed-forward. The activation is the Neural Shape Code (NSC)

f the depth image, which is used later for retrieval task.

Similar to the popular network architecture developed for image

lassification in [9], CNN used here is comprised of five successive

onvolutional layers C1, C2, C3, C4, C5 and three fully connected layers

C6, FC7, FC8, as presented in Fig. 1. After the convolutional layers, we

ave rectified linear (ReLU) transform, a non-saturating non-linear

unction that abandons the negative values in the output. It has been

hown that ReLU can reduce the training time significantly. Three

onvolutional layers C1, C2, C5 are also attached with a max pool-

ng transform. At the top of the architecture, three fully-connected

ayers are computed as Y6 = �(W6Y5 + B6), Y7 = �(W7Y6 + B7),

8 = �(W8Y7 + B8), where Yn represents the output of the nth layer,

nd Wn and Bn are parameters of the nth layer tuned during train-

ng the network. �(X) is the ReLU non-linear activation function that

elects the non-negative values in X, and �(X) is the SoftMax non-

inear activation function that produces the distribution over the en-

ire class labels (352 categories in our cases). The detailed parameter

etup of our architecture is listed in Table 1.

In order to avoid overfitting, a dropout strategy is applied to the

rst two fully-connected layers. The rate of dropout is set to 0.5 by

xperiments. It indicates that the outputs of half neurons, which are
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Fig. 2. The performance of Neural Shape Codes of different layers before or after ReLU

transform in NN (a) and ST (b).
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andomly selected, are set to zero during one training iteration, and

hese “dropped out” neurons contribute nothing to the forward pass

nd back propagation.

The CNN is trained using mini-batch stochastic gradient descent

SGD). The batch size is set to 32, the momentum is set to 0.9, and the

eight decay is set to 0.0005. The weights of each layer are initial-

zed using Gaussian distribution with 0-mean and 0.01-variance. The

euron biases of C1, C3 and FC8 are initialized to 0, and those of other

ayers are initialized to 1.

For each depth view v, we denote the L2 normalized activation of

5, FC6, FC7 after ReLU transform as g+
5
(v), g+

6
(v), g+

7
(v) respectively.

y contrast, the L2 normalized activations prior to ReLU transform

re denoted by g−
5
(v), g−

6
(v) and g−

7
(v). Notice that g+

5
(v), as well as

+
6
(v) and g+

7
(v), only contains non-negative values, due to the usage

f ReLU transform.

In order to evaluate the performance of g−
5
(v), g−

6
(v), g−

7
(v), g+

5
(v),

+
6
(v) and g+

7
(v), we do an experiment with Princeton Shape Bench-

ark (PSB) [10] using the modified Hausdorff distance Dsum_min intro-

uced in Section 2.4. Nearest Neighbor (NN) and Second Tier (ST) are

elected to compare the difference of retrieval performance (see [10]

or more details about the definition of NN and ST).

The results are shown in Fig. 2. It can be seen that the Neural

hape Codes after ReLU transform, non-negative deep learned fea-

ures, usually perform better than those before ReLU transform in

oth NN and ST. In our specific scenario of 3D model retrieval, it is

nteresting that the activation from relatively high layer (e.g. g+
7

) gen-

rally outperforms the one from low layer (e.g. g+
5

) in ST, but achieves

orse result in NN. For 3D model search engine, NN may not be the

ost important index, since NN only counts for the percentage of the

losest matches that belongs to the same class as the query. However,

sers also pay much attention to a group of retrieved objects in the

ront of the candidate list, instead of a single one. We also test the

ctivations of much lower layers (e.g. C3, C4), but get worse results. In

he following experiments, we choose to use g+
7

as our Neural Shape

ode.

In Fig. 3, we give the retrieval results using g+
5
, g+

6
and g+

7
as the

eural Shape Codes for a given query (a desktop computer). From the

andidate list, we find that the activation of the convolutional layer
+
5

presents much different property compared with the activation of

he fully-connected layer (g+
6

or g+
7

). As the first row of Fig. 3 lists, it
Fig. 3. Representative retrieval results in PSB dataset using g
ends to retrieve computer monitors incorrectly using g+
5

. By contrast,

hen using g+
6

or g+
7
, it is more likely to retrieve false results sharing

he similar geometric appearance to the query, such as the building

n the second row and the satellite in the third row. It seems that the

igh level Neural Shape Code is better at dealing with the geomet-

ic deformation, while the relatively low level Neural Shape Code is

ore robust to handle near-duplicate retrieval. Such a phenomenon

nspires us to conduct feature fusion for Neural Shape Codes of differ-

nt layers to further improve the performance. For efficiency, we gen-

rate a Hybrid Neural Shape Codes with the linear combination of g+
5

nd g+
7

with equal weights, which makes a significant gain to a single

eural Shape Code in retrieval performance as shown in Section 3.

.4. Multi-view matching

Let Q and P denote the query model and a certain 3D model in

he database respectively, and the corresponding two feature sets are

(Q) = {q1, q2, . . . , qNv} and F(P) = {p1, p2, . . . , pNv}. How to mea-

ure the matching cost between the two feature sets reliably and effi-

iently is a well-known key issue. It is usually an assignment problem,

hich can be solved by Hungarian, Dynamic Programming, Game

heory [11] or some more sophisticated, probability-based techniques

12].

In our specific scenario, we utilize a simple variant of the

ausdorff distance [13] to evaluate the matching cost, which is

roven to be effective for 3D model retrieval as shown in Section 3.

he distance between the ith view feature qi of the query Q and the

eature set F(P) of the 3D model P can be defined in three ways as

1(qi,F(P)) = min
pj∈F(P)

∥∥qi − pj

∥∥, (1)

2(qi,F(P)) = max
pj∈F(P)

∥∥qi − pj

∥∥, (2)

3(qi,F(P)) =
∑

pj∈F(P)

∥∥qi − pj

∥∥. (3)

ccordingly, we also consider three ways to define the distance be-

ween F(Q) and F(P) as

f1(F(Q),F(P)) = min
qi∈F(Q)

d(qi,F(P)), (4)

f2(F(Q),F(P)) = max
qi∈F(Q)

d(qi,F(P)), (5)

f3(F(Q),F(P)) =
∑

qi∈F(Q)

d(qi,F(P)). (6)

o sum up, it results in nine possible variants of Hausdorff distance

hen combining three point-to-set distance measures di(1 ≤ i ≤ 3)

nd three set-to-set distance measures fi(1 ≤ i ≤ 3). Note that Dmax_min

s the standard Hausdorff distance that measures the greatest of all

he distances from a point in one set to the closest point in the other

et.

It can be inferred that the modified Hausdorff distance Dsum_min is

more proper choice for our model 3D retrieval task, as the matching
+
5
, g+

6
and g+

7
. False positive instances are in red boxes.
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Fig. 4. The performance comparison of different variants of Hausdorff distance.

Table 2

Performance comparison on PSB dataset.

Methods NN FT ST DCG

LFD [4] 0.657 0.380 0.487 0.643

DESIRE [18] 0.665 0.403 0.512 0.663

tBD [19] 0.723 – – 0.667

2D/3D hybrid [20] 0.742 0.473 0.606 –

PANORAMA [3] 0.753 0.479 0.603 –

NSC 0.774 0.557 0.687 0.774

Hybrid NSC 0.794 0.572 0.698 0.785
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cost measured by Dsum_min can remain stable in the presence of some

isolated views. Isolated views usually occur, since 3D model becomes

unrecognized from certain view points. In the matching function de-

fined by Dsum_min, the disturbance of isolated views to the distance

measure is greatly eliminated, by taking the operation of min. More-

over, it also considers the contributions from all query views through

sum operation. In order to prove our conjecture, we draw the P-R

curves of the 9 variants using the Neural Shape Code g+
7

in Fig. 4.

The blue curve depicts the performance of standard Hausdorff dis-

tance Dmax_min, which achieves the second best performance among

all the 9 distance measures, while Dsum_min provides the best result.

The inferior performance of Dmax_min compared with Dsum_min indi-

cates that the standard Hausdorff distance is more likely to amplify

the negative effect of isolated views in the query 3D model, while our

modified Hausdorff distance can decrease it largely. In the following

experiments, Dsum_min is selected as the matching function of Neural

Shape Codes.

3. Experiments

In this section, we evaluate the proposed Neural Shape Codes on

several 3D model benchmark datasets within shape retrieval frame-

work, and experimentally assess its performance against other state-

of-the-art algorithms.

Implementation details. For the procedure of projection rendering,

the range of azimuth angle θ az is restricted to [0, 2 ∗ π ], and [0, π ]

for the elevation angle θ el. We uniformly divide the range of both θ az

and θ el into 8 parts to obtain 8 × 8 view points on the unit sphere.

Hence, we get Nv = 64 views in depth buffer. The views are resized

to 200 × 200.

The Convolutional Neural Network is implemented with Caffe

[14]. The training set we use is Toyohashi Shape Benchmark (TSB)

[15], the biggest benchmark dataset for 3D model retrieval to date.

It contains 100,00 3D models grouped into 352 categories, and our
Fig. 5. Some typical 3D models from PSB dataset (a), WM-SHR
nput to CNN is 100, 00 × 64 depth images. The object categories

n TSB vary from rigid models like airships, cars, bikes to non-rigid

bjects like butterflies, snakes, cows. The training dataset is carefully

hosen to avoid the overlap with testing datasets used below.

atasets. To demonstrate the effectiveness and generalization ca-

ability of the proposed method, experiments are carried out

ith four representative 3D model benchmark datasets, including

rinceton Shape Benchmark (PSB) [10], Watertight Models track of

Hape REtrieval Contest 2007 dataset (WM-SHREC07) [16], National

aiwan University (NTU) dataset [4], CCCC dataset [17]. Some typical

D models are shown in Fig. 5.

valuation methods. To comprehensively assess the performance,

e adopt four evaluation methods, including Nearest Neighbor (NN),

irst Tier (FT), Second Tier (ST), Discounted Cumulative Gain (DCG).

ll the evaluation scores range from 0% to 100%, and a higher score

ndicates a better performance. We also give Precision-Recall plots to

isualize the performances directly. If necessary, the readers could

efer to [10] for more details about the definitions of NN, FT, ST, DCG

nd Precision-Recall plots.

.1. Experiment on PSB dataset

Princeton Shape Benchmark (PSB) [10] is a widely-used generic

enchmark for 3D model retrieval and recognition task. The bench-

ark set of models is split into a training database and a test

atabase, with each containing 907 3D polygonal models. Here we

nly use the testing dataset for evaluation, which are classified into

2 classes.

We compare the proposed deep feature with several state-of-the-

rt methods in Table 2, including PANORAMA [3], 2D/3D Hybrid [20],

BD [19], DESIRE [18] and Light Field descriptor (LFD) [4]. As we can

ee, our proposed deep feature performs best among all the listed

ethods for all the four evaluation metrics. NSC leads to a signifi-

ant improvement of 2.1% in NN, 7.8% in FT, 8.4% in ST compared with

ANORAMA, which is very encouraging since PANORAMA may be the

ost representative descriptor in 3D model retrieval in recent years.

FD is a classical view-based 3D descriptor, in which two artificial
EC07 dataset (b), NTU dataset (c) and CCCC dataset (d).
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Table 3

Performance comparison on WM-SHREC07 dataset.

Methods NN FT ST DCG

LFD [4] 0.923 0.526 0.662 –

Tabia et al. [2] 0.853 0.527 0.639 0.719

DESIRE [18] 0.917 0.535 0.673 –

Covariance [1] 0.930 0.623 0.737 0.864

2D/3D hybrid [20] 0.955 0.642 0.773 –

PANORAMA [3] 0.957 0.673 0.784 –

NSC 0.962 0.725 0.853 0.920

Hybrid NSC 0.960 0.748 0.869 0.926
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Table 4

Performance comparison on NTU dataset.

Methods NN FT ST DCG

LFD [4] 0.700 0.390 0.501 –

DESIRE [18] 0.719 0.427 0.554 –

2D/3D hybrid [20] 0.762 0.466 0.591 –

PANORAMA [3] 0.797 0.490 0.610 0.755

NSC 0.794 0.512 0.638 0.769

Hybrid NSC 0.828 0.520 0.646 0.777

Table 5

Performance comparison on CCCC dataset.

Methods NN FT ST DCG

LFD [4] 0.798 0.502 0.631 –

DESIRE [18] 0.828 0.556 0.700 –

2D/3D hybrid [20] 0.874 0.602 0.758 –

PANORAMA [3] 0.879 0.663 0.812 –

NSC 0.887 0.686 0.835 0.868

Hybrid NSC 0.896 0.696 0.840 0.874

Table 6

DCG comparison on SHREC 2010 non-rigid dataset.

Methods HKS SIHKS

BoF [22] 0.806 0.919

SSBoF [22] 0.804 0.916

ISPM [23] 0.859 0.931

NSC 0.930

Hybrid NSC 0.945
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eatures Zernike moments and Fourier descriptors are extracted. It is

vident that NSC automatically performs markedly better than these

rtificial features. The excellent performance reflects the highly dis-

riminative power of NSC for 3D model retrieval.

Moreover, the Hybrid NSC improves the performance of the pro-

osed NSC further. The improvement brought by Hybrid NSC is 2.0%,

.5%, 1.1% and 1.1% in NN, FT, ST, and DCG respectively. Note the cost

or the performance improvement by Hybrid NSC is tiny compared

ith using NSC only, for we just consider the concatenation of g+
5

and
+
7

with equal weights, and it only increases the dimension of the fi-

al representation for views. Indeed, more complicated feature fusion

ethods can be used here. Compared with other hybrid methods, our

ybrid of g+
5

and g+
7

performs better than 2D/3D Hybrid descriptor in

ll the four evaluation metrics, and more than 9% improvement is ob-

erved in ST.

.2. Experiment on WM-SHREC07 dataset

Watertight Models track of SHape REtrieval Contest 2007 dataset

WM-SHREC07) [16] is a standard benchmark for the well-known

D shape retrieval competition held each year. 400 watertight mesh

odels are evenly distributed into 20 classes, which exhibit sufficient

nd diverse variation, from pose change to shape variability in the

ame semantic group. Each model is used in turn as a query against

he remaining part of the database.

In Table 3, the retrieval performances resulting from other state-

f-the-art approaches and our proposed method are reported. Be-

ides PANORAMA [3], 2D/3D Hybrid [20], DESIRE [18] and LFD [4], we

lso report the results of two recent published algorithms [1,2]. Tabia

t al. [2] propose a curve-based method which conducts curve anal-

sis around the detected interest points in the surface of 3D model.

ovariance method [1], which uses the covariance of the features in-

tead of the features themselves, is the latest algorithm that works

ell in WM-SHREC07 dataset.

From the table, we find that the NSC outperforms Covariance

ethod by 2.8% in NN, 11.1% in FT, 12.2% in ST, 5.7% in DCG and ex-

eeds the curve-based method by 10.9% in NN, 19.8% in FT, 21.4% in

T and 20.1% in DCG.

Despite of the fact that NSC leads to the state-of-the-art per-

ormance in this dataset, Hybrid NSC improves the retrieval perfor-

ance further, as listed in the last row in Table 3.

.3. Experiment on NTU dataset

National Taiwan University (NTU) dataset [4] comprises 1,833 3D

odels, 1,284 of which are unclassified and unlabeled models. Fol-

owing the standard setup, only 549 models, divided into 47 cate-

ories, are used for 3D model retrieval.

The quantitative retrieval results of different algorithms are listed

n Table 4. Although the proposed NSC performs slightly worse (only

.3%) than PANORAMA [3] in NN, it outperforms PANORAMA by 2.2%

n FT, 2.8% in ST and 1.4% in DCG. The Hybrid NSC achieves the best

erformance among all the compared methods in the four evaluation

etrics.
.4. Experiment on CCCC dataset

CCCC [17] is made of 472 3D models, subdivided into 55 cate-

ories. The number of models per category ranges from 2 to 56.

In Table 5, retrieval results using several state-of-the-art methods

re provided. In correspondence with the previous results in other

D datasets, NSC and Hybrid NSC perform better that all other ap-

roaches, which validates again the effectiveness and generalization

f our propose descriptor.

.5. Visualization of Precision-Recall

Besides the quantitative results listed above, P-R plots are also

iven to visualize the difference of various algorithms in performance

irectly. From Fig. 6, it can be found easily that our proposed features,

eural Shape Codes and Hybrid Neural Shape Codes outperform the

ther compared methods significantly.

.6. Robustness to non-rigid deformation

Neural Shape Code is partly robust to non-rigid deformation, due

o the inborn nature of CNN. Different from many previous man-

ade features that utilize intrinsic information, Neural Shape Codes

ses the neutral network to automatically capture the repetitive

tructures from large amounts of training data. In order to confirm

his, an extra experiment on SHREC 2010 non-rigid dataset [21] is

onducted, and the performance comparison is listed in Table 6. As

t suggests, the DCG value of NSC and Hybrid NSC are 0.930 and

.945 respectively, while the best performance of Shape Google [22]

s 0.919, which confirms the robustness of Neural Shape Codes to non-

igid deformation.

.7. Parameter discussion

Some primary parameters of NSC are the view number Nv and the

iew size. In this section, we discuss the influence of these parame-

ers on the final retrieval accuracy (DCG) in Fig. 7 with PSB dataset.
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Fig. 6. The Precision-Recall plots of Neural Shape Codes and other compared algorithms in various 3D model datasets.
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Fig. 7. The influence of view size (a) and view number (b) on ST in PSB dataset.

Table 7

The comparison of pairwise matching time on PSB dataset.

Methods The matching time

LFD [4] 1.30 ms

PANORAMA [3] 0.23 ms

2D/3D hybrid [20] 0.17 ms

NSC 0.18 ms

NSC (Hungarian) 0.72 s
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As can be drawn from Fig. 7(a), the retrieval performance im-

proves with the view size increasing, and it gets saturated at the size

of 250. Since larger view size leads to heavier computational cost, the

default view size is set to 200 considering that such a setup merely

performs slightly inferior to the best performance. The influence of

Nv of NSC is illustrated in Fig. 7(b). Here we consider three situations:

(1) varying Nv of training set, while keep Nv of testing set unchanged;

(2) Nv is fixed for training set, while varying Nv of testing set; (3) Nv

of training set and testing set are changed at the same time. The three

situations are denoted as “Training set”, “Testing set” and “Both” re-

spectively in the figure, and the three curves intersect in the default

setup, i.e. Nv is 64. It can be drawn easily that the view number of

training set affects the retrieval performance more largely than that

of testing set. Generally it leads to more benefit when using more

views, and thus demonstrates the potential of NSC further.

3.8. Complexity analysis

The Hausdorff distance is used for multi-view matching, which

may be the most efficient approach for measuring a set-to-set
istance. However, the complexity of Neural Shape Codes using the

ausdorff distance is O(N2 × N2
v ) (N denotes the database size),

hich is higher than O(N2) if our learned features for 3D models lie in

he vector space. We implement the multi-view matching procedure

n a desktop machine with an Intel(R) Core(TM) i5 CPU (3.40 GHz)

nd 16 GB memory, and give the comparison of pairwise matching

ime in Table 7 on PSB dataset. Here, one more algorithm is consid-

red for the matching of NSC, i.e. Hungarian. In this situation, the time

omplexity of NSC is increased to O
(
N2 × (N2

v + N3
v )

)
.

As the table shows, the matching time of NSC is still compara-

le with other representative algorithms. NSC using Hungarian algo-

ithm for multi-view matching takes 0.72 s, and the entire time for

nishing the retrieval test on PSB dataset requires totally seven days.

s for retrieval accuracy, the performance of NSC, 0.775 in DCG, is

nly comparable with modified Hausdorff distance. It indicates that

ausdorff distance tends to be a better choice than Hungarian in

erms of efficiency.

. Conclusions

In this paper, we addressed the task of 3D model retrieval using

onvolutional Neural Network (CNN). We use the depth projections

f 3D model as the inputs of the neural network, instead of the 3D

odel itself. The activation of the internal layer of CNN is regarded as

he learned feature for 2D depth view. The matching between two 3D

odels is achieved by efficiently computing the modified Hausdorff

istance between two corresponding view sets in the feature space.
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.1. Why to use the NSC?

Indeed, many “man-made” features [24–37] have been proposed

r introduced for 3D model retrieval, recognition and matching in

he past decade, but they fail to achieve satisfactory performance. By

ontrast, our proposed Neural Shape Code is a non-artificial feature,

hich is learned using CNN. With large amounts of training data, the

upervised learning procedure gets Neural Shape Codes more capable

f handling the large intra-class variance and small inter-class vari-

nce. The discriminative power and generalization capability of our

roposed Neural Shape Codes have been demonstrated on four pop-

lar 3D shape benchmark datasets.

If more 3D objects are used for training CNN, it can be expected

hat Neural Shape Codes can provide better performance further.

oreover, the neural network structure is very flexible. More neurons

nd more layers can be added to enhance the capacity of network,

hich meets the requirements for big data. In one word, we think

hat Neural Shape Code is an excellent 3D model descriptor with great

otential.

.2. Limitations

As stated in Section 3.8, the time complexity of NSC is a bit high re-

arding real-time retrieval. Hence how to aggregate the Neural Shape

odes efficiently without decreasing the retrieval performance is still

n open issue.
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