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Sparse Contextual Activation for
Efficient Visual Re-Ranking

Song Bai, Student Member, IEEE, and Xiang Bai, Senior Member, IEEE

Abstract— In this paper, we propose an extremely efficient
algorithm for visual re-ranking. By considering the original
pairwise distance in the contextual space, we develop a feature
vector called sparse contextual activation (SCA) that encodes
the local distribution of an image. Hence, re-ranking task can be
simply accomplished by vector comparison under the generalized
Jaccard metric, which has its theoretical meaning in the fuzzy
set theory. In order to improve the time efficiency of re-ranking
procedure, inverted index is successfully introduced to speed
up the computation of generalized Jaccard metric. As a result,
the average time cost of re-ranking for a certain query can
be controlled within 1 ms. Furthermore, inspired by query
expansion, we also develop an additional method called local
consistency enhancement on the proposed SCA to improve the
retrieval performance in an unsupervised manner. On the other
hand, the retrieval performance using a single feature may
not be satisfactory enough, which inspires us to fuse multiple
complementary features for accurate retrieval. Based on SCA,
a robust feature fusion algorithm is exploited that also preserves
the characteristic of high time efficiency. We assess our proposed
method in various visual re-ranking tasks. Experimental results
on Princeton shape benchmark (3D object), WM-SRHEC07
(3D competition), YAEL data set B (face), MPEG-7 data set
(shape), and Ukbench data set (image) manifest the effectiveness
and efficiency of SCA.

Index Terms— Jaccard distance, feature fusion, re-ranking,
retrieval, inverted index.

I. INTRODUCTION

CONTEXTUAL similarity/dissimilarity [1]–[3] has been
extensively exploited recently due to its effectiveness in

various visual retrieval tasks, such as natural image search,
shape retrieval, biological information retrieval, analysis of
time series, etc.. Unlike traditional Content-based Image
Retrieval (CBIR) systems that consider only pairwise dis-
similarity measure for ranking and indexing, the approaches
about contextual dissimilarity measure are proposed to explore
the contextual information from the database instances, and
enhance and refine the dissimilarity measure to improve the
retrieval performance, which is usually considered as an
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unsupervised re-ranking procedure based on the given distance
measure.

In general, the re-ranking procedure is often performed
as a post-processing step of ranking initialization, which
creates a ranking list for a given query. For image retrieval,
the dissimilarity measure between a pair of images is often
obtained by calculating the distance of their corresponding
features under a certain metric. Given a query image, all the
database images are sorted in an ascending/descending order
according to their dissimilarities/similarities to the query. The
ranking list for the query image can be finally initialized,
where the most similar images occupy its top positions. A key
issue in ranking initialization is to design proper features with
enough discriminative power to represent an image, during
which the Bag-of-Words (BoW) [4] image representation is
often suggested.

Instead of ranking with pairwise dissimilarity measure,
the contextual re-ranking algorithms have been proposed and
demonstrate their effectiveness by considering the relation-
ships among all database instances [1]–[3], [5]–[7]. In these
re-ranking algorithms, the dissimilarity measure between two
instances is iteratively updated and refined by taking into
account their local distributions (neighborhood structure).
As the neighborhood of each instance can be directly obtained
from the ranking list, the key advantage of these re-ranking
approaches is that training/labeled data is not required,
operating in an unsupervised manner.

Though extensively studied, almost all the existing
contextual re-ranking algorithms only pay much attention
to the effectiveness, which refers to the level of retrieval
accuracy. The efficiency, which refers to the time cost for
the procedure of re-ranking, has been more or less neglected.
However, both effectiveness and efficiency are quite important
for a real-time retrieval system, and the tradeoff between
them is badly required at present. The contextual re-ranking
approaches [1], [8] often consider all the distances among
instances of a given dataset, and the contextual dissimilarities
are often achieved by operating on such a distance matrix.
Therefore, a large computational effort is essential (typically,
between O(N2) and O(N3), N is the number of images in
the database), which seriously hinders their use in retrieval
services that require for fast re-ranking. As a result, some
re-ranking algorithms [9] are only applied to a subset of
retrieved images to make a tradeoff between efficiency and
effectiveness.

In this paper, we address the contextual re-ranking prob-
lem in an alternative and simpler manner. The contextual

1057-7149 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



BAI AND BAI: SCA FOR EFFICIENT VISUAL RE-RANKING 1057

dissimilarity measure between two images is calculated by
comparing two neighborhood sets, i.e. the neighborhood sets
of a query and a target. It shares a similar intuition with
the traditional approaches that the relationship between two
images should not only be determined by the distance between
them, but also influenced by their neighbors on the distance
manifold. Our main contribution is to propose an extremely
fast re-ranking algorithm called Sparse Contextual Activa-
tion (SCA) to compute the dissimilarity between such two
neighborhood sets. Given a certain image, the basic idea of
SCA is encoding its local distribution according to the original
pairwise similarity into a single vector. Consequently, the
contextual dissimilarity measure (set-to-set distance) between
two images can be simply obtained by comparing two encoded
vectors. Due to the sparsity property of such encoded vectors,
the inverted index [10] can be further used to speed up the
computation of the vector comparison for re-ranking. Besides
the efficiency of SCA, it also achieves state-of-the-art retrieval
performances on several standard benchmarks. In addition,
we extend the proposed SCA for efficiently fusing multi-
ple kinds of distance metrics for highly effective re-ranking
while the inverted index can be also incorporated. Though
the focus of this paper is re-ranking, contextual similarity
has been successfully adopted in many image processing or
vision tasks including image segmentation [11], [12], object
tracking [13]. In this sense, the high efficiency of SCA is
significant.

The rest of the paper is organized as follows. We first
review some related work in Section II. The details of Sparse
Contextual Activation (SCA) are introduced in Section III,
and feature fusion based on SCA is described in Section IV.
Experiments are carried out in Section V. Conclusions and
future work are summarized in Section VI.

II. RELATED WORK

Since there exist a large amount of works on re-ranking
algorithms, we only review the unsupervised re-ranking
algorithms in this section.

A. Re-Ranking With Single Distance Measure

In recent years, contextual information has been success-
fully explored to improve the retrieval accuracy by replacing
a given pairwise similarity with a more faithful one, which is
learned by considering the relationships among the database
objects [3], [8], [14]–[18]. The contextual re-ranking has a
very diverse taxonomy (graph transduction [3], [16], diffusion
process [2], [8], [17], rank aggregation [19], [20], contextual
similarity/dissmilaries measure [1], [14], [15], query expan-
sion [21], [22], ranking list comparison [23], [24]). These
post-processing approaches share the common spirit that the
effectiveness of retrieval tasks is improved by taking use
of relationships among dataset objects in an unsupervised
manner, without labeled data.

One of the most classical algorithms is graph transduc-
tion (GT) [3]. As an unsupervised method, GT spreads the
information from the labeled data to unlabeled data by regard-
ing the query itself as the only labeled data.

A popular branch for re-ranking is diffusion process, which
is summarized as a generic framework in [2]. Most variants of
diffusion process share the same perspective that the pairwise
similarity is context-sensitive, and the geometric structure
of data manifold should be considered. In [8], Locally
Constrained Diffusion Process (LCDP) is proposed to apply
the affinity propagation with the constraint of locality. Tensor
Product Graph (TPG) [17] diffuses the similarity information
in the tensor product graph achieved by the tensor product of
the original graph with itself.

Based on the observation that a good ranking is usually
asymmetric, Contextual Dissimilarity Measure (CDM) [1]
improves the retrieval performance of BoW vectors by
modifying the neighborhood structure using Sinkhorn’s
scaling algorithm. Ranking consistency in [18] is used as a
verification method to refine an existing ranking list. Query
Expansion [21], [22] can substantially improve the retrieval
performance by using relevant images as extra queries. Spatial
verification [9] is proposed for re-ranking by considering the
spatial constraints.

These aforementioned algorithms, as well as Self Dif-
fusion (SD) [11], diffusion maps [25], aims at improving
the retrieval accuracy, however the re-ranking efficiency is
more or less neglected. For example, the time complexity of
LCDP [8] and TPG [17] is O(N3). By contrast, our proposed
SCA is a highly efficient re-ranking algorithm (in O(N)
time complexity), while also performs better in retrieval
accuracy.

B. Re-Ranking With Multiple Distance Measures

Multiple distance measure fusion has been proven effective
in various visual applications, such as visual tracking [13],
image classification [26] etc.. Considering that one distance
measure only focuses one aspect of images, some re-
ranking algorithm also deals with multiple complementary
features.

Zhang et al. [27], [28] fuse BoW feature and holistic
feature by a graph-based query specific fusion, and re-
ranking is performed by using the local PageRank algorithm
or finding the weighted maximum density subgraph.
Co-transduction [29] adopts a semi-supervised framework
based on co-training [30], [31] to combine complementary
features for image and shape retrieval. In [32], a regularization-
based feature selection algorithm is proposed to leverage both
the sparsity and clustering properties of multiple features.

Besides multiple distance measure fusion, some algorithms
also focus on designing an individual distance measure using
multiple features. For example, c-MI [33] integrates SIFT
descriptor [34] and color descriptor into a multi-dimensional
inverted index. In [35], a multi-IDF scheme is proposed, by
which different binary features are coupled into the inverted
index. Co-indexing [36] jointly embeds local invariant features
and semantic attributes.

Based on sparse contextual activation, we also propose a
re-ranking version that deals with multiple distance measures,
which not only maintains the characteristic of efficiency, but
also improves the performance significantly.
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III. SPARSE CONTEXTUAL ACTIVATION

Let X = {x1, x2, . . . , xN } denote a collection of images.
We define two functions listed as follows:

• Function f : x → R
n : it extracts a n-dimensional feature

to represent the input image x .
• Function d : R

n × R
n → R: it computes the distance for

the two input feature vectors f (xq) and f (x p) under a
certain metric, where xq and x p represent two images in
the database.

The distance d
(

f (xq), f (x p)
)

is taken as the dissimilarity
of the images xq and x p . To simplify the notation, we use
d(xq, x p) to replace d

(
f (xq), f (x p)

)
below where possible.

After all the pairwise dissimilarity values related to the
given query xq are achieved, we could initialize the ranking
list by sorting the dissimilarity in an increasing order. The
images with smaller dissimilarity values are ranked higher in
the retrieval list, and vice versa.

Next, we introduce our proposed re-ranking algorithm to
refine the original distance measure with high time efficiency.

A. Preliminary

We deem that if xq and x p are similar, their retrieval results,
especially the top-ranked results, are exactly or approximately
the same in the expected situation. Let Nk(xq) represent the
neighborhood set of xq achieved by the k-nearest neighbors
rule in the original distance space d . Nk(xq) is a mathe-
matical set that contains the top-k candidates in the ranking
list of xq . Then, the distance of two neighborhood sets
Nk(xq) and Nk(x p) is measured by Jaccard distance as

dJ (xq , x p) = 1 − |Nk(xq) ∩ Nk(x p)|
|Nk(xq) ∪ Nk(x p)| , (1)

where |.| calculates the cardinality of the input set, and
|Nk(xq)| = k. With the distance measure defined by Eq. (1),
the original ranking list of a given query xq can be re-ranked.

The re-ranking distance measure in Eq. 1 is expected to
achieve better performance than the original one, for it utilizes
the additional contextual information as diffusion process
does. However it also has many shortcomings.

1) The neighbors in the neighborhood set contribute
equally. It is not a proper behavior, since the top-ranked
neighbors are more likely to be true positive patterns.
Assigning larger weights to the top-ranked neighbors,
and increasing their effects on the re-ranking distance
measure is more reasonable.

2) The re-ranking distance measure is defined between
two sets. In the specific scenario of re-ranking, it is
more convenient to define the distance measure on two
vectorial features.

3) The neighborhood set is simply defined as the k-nearest
neighbors, which cannot guarantee that the images from
the same category could own similar neighborhood sets,
especially when a certain amount of outliers also occupy
top positions in the ranking list.

In the next section, Sparse Contextual Activation (SCA)
is proposed to address these problems. The Jaccard distance

defined in Eq. (1) will serve as the baseline method, and we
will compare it with our proposed SCA in terms of retrieval
performance and running time. For notation clarity, we refer
to the baseline method as Jaccard re-ranking below.

B. The Proposed Sparse Contextual Activation

The neighborhood set Nk(xq) is converted to a vector
representation by defining an binary indicator function
Fq = [Fq,1, Fq,2, . . . , Fq,N ] as

Fq,p =
{

1 if x p ∈ Nk(xq)

0 otherwise.
(2)

As we can see, the binary vector Fq shows whether a certain
image x p appears in the neighborhood set of xq .

Based on the definition of the indicator function, the inter-
section and union set of Nk(xq) and Nk(x p) are interpreted as

Nk(xq) ∩ Nk(x p) ⇐⇒ M I N
(
Fq , Fp

)
, (3)

Nk(xq) ∪ Nk(x p) ⇐⇒ M AX
(
Fq , Fp

)
, (4)

where M I N (or M AX) calculates the element-wise minimum
(or maximum) value for two input vectors of the same length.
Thus we attain the cardinality for the intersection and the
union set by computing the L1 norm of their corresponding
indicators as

|Nk(xq) ∩ Nk(x p)| = ‖M I N(Fq , Fp)‖1, (5)

|Nk(xq) ∪ Nk(x p)| = ‖M AX (Fq , Fp)‖1. (6)

Based on Eq. (5) and Eq. (6), we can rewrite the definition
of Jaccard distance in Eq. (1) as

d̂J (xq, x p) = 1 −
∑N

i=1 min
(
Fq,i , Fp,i

)

∑N
i=1 max

(
Fq,i , Fp,i

) . (7)

Now, the definition of Jaccard distance in Eq. (1) has been
successfully defined in vector space. That is to say, we do
not use a set, but use an indicator function to represent the
neighbors of an image. As a result, the Jaccard distance
of two neighborhood sets can be easily achieved by vector
comparison through Eq. (7).

Note that the indicator function in Eq. (2) also considers the
neighbors equally, but it is easy to implement different weights
by restricting the value of the original binary indicator vector
in the unit interval [0, 1]. However, it may be misleading that
Fq,p is assigned to a certain constant between 0 and 1, since
the role of Fq,p is to indicate the membership of the image x p

in the neighborhood set Nk(xq). In classical set theory, the
membership of x p in the set Nk(xq) is exact (xq either belongs
or does not belong to the set). It seems difficult to generalize
the binary indicator function in the unit interval [0, 1] with
rational explanations.

To tackle with the problem, we introduce the fuzzy set
theory. In mathematics, fuzzy set is a set whose elements have
degrees of membership determined by a membership function.
Compared with the classical set theory, fuzzy set allows the
gradual assessment of the membership of elements in a set.
At last, we define the neighborhood set as a fuzzy set in
fuzzy set theory, and the membership grade of x p in the
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neighborhood set Nk(xq) is determined by the corresponding
membership function Fq,p ∈ [0, 1].

The problem we face now is how to determine the mem-
bership grade of neighbors. A natural solution is to use the
elements in Nk(xq) to reconstruct xq in the feature space with
non-negative constraint, and the weights for reconstruction can
be used as the membership grades. It can be formulated as

min
∑

q

‖ f (xq) −
∑

i|xi ∈Nk(xq )

Fq,i f (xi )‖2,

s.t. 1T Fq = 1, Fq 	 0. (8)

Except for the non-negative constraint, this formulation almost
shares the same perspective with Locally Linear Embed-
ding (LLE) [37], a classical non-linear dimension reduction
algorithm. LLE expects each data point and its neighbors lie
on or close to a locally linear patch of the manifold, and the
reconstruction weights are used for dimension reduction by a
neighborhood preserving mapping.

However, in the specific scenario, the above solution may
be not fit enough for visual re-ranking for three reasons. First,
LLE usually presumes that there is sufficient data so that the
data manifold is well-sampled, but retrieval task may also be
needed in small datasets. Second, the requirement for real-time
retrieval is usually declared, and it is time-consuming to solve
the least square optimization problem for each query presented
in Eq. (8). On the other hand, the image is represented by a set
of vectors instead of a single vector in some cases (e.g. shape
analysis in [38]–[40]), which makes the above optimization
problem more difficult to solve. Hence, we just apply the
(truncated) Gaussian kernel to the pairwise distances with the
given query xq , and the membership function is defined as

Fq,p =
{

exp
(−d(xq, x p)

)
if x p ∈ Nk(xq)

0 otherwise.
(9)

As a result, the top-ranked neighbors are assigned larger mem-
bership grades. Fq is subsequently L1 normalized according
to the sum-to-one constraint, and used for re-ranking through
Jaccard distance defined in Eq. (7). In this way, the Jaccard
distance is generalized to non-binary vectors.

In summary, the neighbors of xq actually act as Local Coor-
dinate System, and we can get a Sparse Contextual Activation
denoted by Fq for xq through Eq. (9). The “Contextual” here
indicates that Fq has non-zero values only in the index where
the neighbors of xq are located. Usually the cardinality of
Nk(xq) is much smaller than the size of the entire dataset,
so the contextual activation is also a sparse vector. The
property of sparsity is crucial in our algorithm. With this
constraint, the negative influences of unreliable references are
eliminated. What is more important is that the calculation
of Jaccard distance in Eq. (7) can be accelerated using
inverted file as presented in Section III-C. In Fig. 1, we
give an illustration of our proposed Sparse Contextual
Activation (SCA).

C. Inverted Index Embedding

The proposed Sparse Contextual Activation (SCA) already
manages assigning different weights to the neighbors at

Fig. 1. The illustration of sparse contextual activation.

different positions in the ranking list, and gives a vector
representation used for re-ranking. However, distance
computation between a pair of SCAs is also waste of time,
especially when the size of database becomes larger. Although
the length of SCA is equal to the size of image database N , but
the number of non-negative values in SCA is independent, only
determined by the cardinality of neighborhood set. Consider-
ing the sparsity property of SCA, we introduce the inverted
index [10] to reduce the computation complexity significantly.

Inverted index is a scalable indexing structure to store a
large collection of images with their features. Although it has
been applied to image retrieval successfully (e.g. [41]–[43]),
it is the first work that introduces inverted index to visual re-
ranking to our best knowledge now. Moreover, different from
the usage of inverted index in Minkowski metric (Euclidean
distance, Manhattan distance, etc.), we prove the feasibility of
applying it in the metric of Jaccard distance theoretically.

Given two sparse contextual activations Fq and Fp , the
M I N operation can be computed as

‖M I N(Fq , Fp)‖1 =
∑

i|Fq,i 
=0,Fp,i 
=0

min(Fq,i , Fp,i )

+
∑

i|Fq,i =0

min(Fq,i , Fp,i )

+
∑

i|Fp,i =0

min(Fq,i , Fp,i ). (10)

Since the sparse contextual activation only contains non-
negative values, it is easy to find that last two items in Eq. (10)
are equal to zero. So the M I N operation can be achieved much
more efficiently by

‖M I N(Fq , Fp)‖1 =
∑

i|Fq,i 
=0,Fp,i 
=0

min(Fq,i , Fp,i ), (11)

and it is only a query-dependent operation.
By contrast, the computation of the M AX opera-

tion seems to be a bit complicated, since the item∑
i|Fq,i =0 max(Fq,i , Fp,i ) = ∑

i|Fq,i =0 Fp,i is not only deter-

mined by the query side. However, we also offer an efficient
way to calculate the M AX operation. Note that

‖Fq‖1 + ‖Fp‖1 = ‖M I N(Fq , Fp)‖1 + ‖M AX (Fq , Fp)‖1.
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Fig. 2. The inverted index for re-ranking.

Fig. 3. The distribution of the percentage of true positives at the k-th position
in the ranking list for all the queries. “VLAD” and “Deep” denote two visual
features used in our experiment. Please refer to Section V-A for more details.

For two L1 normalized sparse contextual activation, we can
get

‖M AX (Fq , Fp)‖1 = 2 − ‖M I N(Fq , Fp)‖1,

= 2 −
∑

i|Fq,i 
=0,Fp,i 
=0

min(Fq,i , Fp,i ). (12)

In summary, our structure of inverted index is built as
follows: (1) It has N entries as Fig. 2 shows, where N is
the size of database. Each entry relates to an image that acts
as a base for activation. (2) For each entry p, we store the
IDs of images whose neighborhood sets contain x p and the
corresponding membership grades. In other words, x p owns
non-zero membership grades in these neighborhood sets.
(3) When re-ranking for the query xq , distance compu-
tation can be conducted in a much smaller space using
Eq. (11) and Eq. (12) as inverted index usually does.

Different from the inverted index on local descriptors in
the paradigm of Bag of Words (BoW) model [4], our inverted
index for re-ranking can be assumed as the second-level index,
which is used in the level of images.

D. Local Consistency Enhancement

The images from the same category are expected to own
the same neighborhood set, so that the distances between
their sparse contextual activations are small. However, the
neighborhood set is determined using k-nearest neighbors rule,
which may be the simplest and the most efficient principle.
Indeed, one can identify the neighborhood set by using more
sophisticated rules (e.g. dominant neighbors [17]), but it will
increase the computational time dramatically. Any extra time
cost is not what we want in the proposed algorithm.

Inspired by the query expansion [21], [22] and local rele-
vance feedback [44] in information retrieval, we propose to
enhance the local consistency in generating SCAs of images
from the same category using a similar way. In more detail,

Algorithm 1 The Pseudocode of SCA

we define the Local Consistency Enhancement (LCE) on the
sparse contextual activation as

Fq := 1

|Nk(xq)|
∑

i∈Nk (xq )

Fi , (13)

by speculating that the images which are located very high
in the initial ranking list of the query xq are from the same
category as the query. In our experiment, LCE is applied only
once, both in the query side and database side.

In order to confirm our conjecture, an empirical analysis
is performed on Princeton Shape Benchmark (PSB) [45].
We plot the percentage of true positives at the k-th position in
the ranking list for all the queries in Fig. 3. It can be seen that
the percentage of true positives decreases with the value of
k increasing, and it is extremely high when k is small. Note
that several false positives also exist at smaller value of k,
which is known as query drift, but the small percentage of false
positives will not impair the whole performance too much.

Based on the above analysis, the proposed LCE is an
unsupervised method that does not need to know the labels.
Compared with sparse contextual activation that considers the
information from the direct neighbors of xq , LCE is defined to
consider the neighbors of the second order (i.e. the neighbors
of the neighbors of xq). As a result, LCE is more likely to
include noise and outliers. Hence, we restrict the size of the
neighborhood set used in LCE to a much smaller value in the
experiments.

In order to distinguish the two neighborhood sets, both
derived from the original distance space d , used in sparse con-
textual activation (Eq. (9)) and local consistency enhancement
(Eq. (13)), we denote the size of the former one as k1 and that
of the latter one as k2 below.

The whole algorithm is summarized in Algorithm 1.
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IV. SPARSE CONTEXTUAL ACTIVATION WITH

MULTIPLE DISTANCE MEASURES

The proposed Sparse Contextual Activation presented above
deals with only one input distance measure. In this section, we
present how to introduce our method into rank aggregation for
multiple input distance measures. We take two input distance
measures as an example.

Let f α and f β denote two feature extractor functions for
images, and dα and dβ represent the corresponding distance
functions respectively. Then for the image xq with the feature
extractor f α (or f β ), we can also achieve the neighborhood
set N α

k (xq) (or N β
k (xq)).

A. High Set and Low Set

Given a query image xq and its two neighborhood sets

N α
k (xq) and N β

k (xq). We call the intersection set of the
two neighborhood sets High Set, which can be described
as

N (H)
k (xq) = N α

k (xq) ∩ N β
k (xq), (14)

and call the union set Low Set as

N (L)
k (xq) = N α

k (xq) ∪ N β
k (xq). (15)

The “high” indicates that the images in the high set are
more likely to be true positives, since the images in the set
occupy top positions in two ranking lists achieved by two
distance functions dα and dβ . By contrast, the low set may
contains more false positives, for it is defined with a looser
constraint, i.e. the images will be assigned to the low set as
long as they are ranked high by either dα or dβ .

In order to perform extremely fast rank aggregation later,
we also generate the sparse contextual activations for high set
and low set similarly. In more detail, let Fα

q (or Fβ
q ) denote

the sparse contextual activation of xq computed using Eq. (9)
under the distance measure dα (or dβ ). The membership
functions of high set and low set are defined respectively based
on Eq. (3) and Eq. (4)

N (H)
k (xq) ⇐⇒ F (H)

q = M I N
(

Fα
q , Fβ

q

)
, (16)

N (L)
k (xq) ⇐⇒ F (L)

q = M AX
(

Fα
q , Fβ

q

)
. (17)

As a result, two sparse contextual activations
F (H)

q and F (L)
q , corresponding with high set and low

set respectively, are achieved for xq .
One can find that we perform feature fusion naturally

by defining the two sets, so the unsupervised estimation
about the weights of two individual features during fusion
procedure are avoided. As we all know, different features are
often in different scales or measured by different statistics,
which makes the weight learning in feature fusion difficult,
especially in an unsupervised way. Our proposed sparse con-
textual activation for feature fusion is simple yet delicate.
It does not require any complicated learning or optimization
methods.

B. Distance Fusion

After getting two sparse contextual activations for each
image in the database, we define the distance measure for
rank aggregation as

d̂J (xq , x p) = 1 − 1

2

∑

I=H,L

∑N
i=1 min

(
F (I )

q,i , F (I )
p,i

)

∑N
i=1 max

(
F (I )

q,i , F (I )
p,i

) . (18)

The contribution of high set and low set are treated equally,
which avoids the parameter tuning at the stage. It seems that
the individual performance of high set is better than low set,
due to its high percentage of true positives. The true fact
is that the definition of high set may be too strict in the
specific scenario of re-ranking. In some cases (especially when
parameter k1 is not large enough), a much small number
of images will be assigned to the high set, which deprives
its discriminative ability. However, with k1 increasing, the
individual performance of high set will surpass low set after
a certain threshold without doubt. We will experimentally
analyse the performance difference between high set and low
set in Section V-E, and prove that a simple linear combination
of them is better than using either one only.

It should be mentioned that the inverted index
(Section III-C) and local consistency enhancement
(Section III-D) can also be introduced into this feature
fusion paradigm. The two additional methods can improve
the efficiency and accuracy remarkably.

V. EXPERIMENTS

In this section, we will evaluate the performance of the
proposed Sparse Contextual Activation (SCA) in various visual
re-ranking task. The datasets we use are Princeton Shape
Benchmark (PSB) [45], Watertight Models track of SHape
REtrieval Contest 2007 dataset (WM-SHREC07) [46], YALE
face dataset B [47], and MPEG-7 shape dataset [48] and
Ukbench image dataset [10]. The discussion about the para-
meter settings and the analysis of the algorithm complexity
are presented in Section V-E and Section V-F respectively.

A. 3D Object Retrieval

In this section, we show the application of the proposed
SCA to 3D object retrieval on the well-known Princeton Shape
Benchmark (PSB) [45] and Watertight Models track of SHape
REtrieval Contest 2007 dataset (WM-SHREC07) [46].

The PSB benchmark contains 1,804 3D polygonal models,
which are divided into training set and testing set with
907 models each. Following the common settings, only the
testing set is used to evaluate the performance of 3D object
retrieval. The testing set is spilt into 92 categories, and the
number of models per category ranges from 4 to 50.

SHape REtrieval Contest (SHREC) is the most authoritative
competition for evaluating the effectiveness of 3D object
retrieval algorithms. It will be held each year, involving
multiple tracks, such as sketch-based 3D retrieval, textured
3D retrieval, etc.. In this paper, WM-SHREC07 is chosen,
which consists of 400 watertight mesh models that are evenly
distributed into 20 classes. The models exhibit sufficient and
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TABLE I

THE PERFORMANCE COMPARISON IN FT OF DIFFERENT RE-RANKING ALGORITHMS ON PSB DATASET AND WM-SHREC07 DATASET

TABLE II

THE PERFORMANCE COMPARISON WITH OTHER STATE-OF-THE-ART ALGORITHMS ON PSB DATASET AND WM-SHREC07 DATASET

diverse variation, from pose change to shape variability in the
same semantic category.

Four evaluation metrics are adopted to assess the retrieval
performance, listed as follows:

• Nearest Neighbor (NN): the percentage of the closest
matches that belongs to the same class as the query.

• First Tier (FT): the recall for the top C − 1 matches in
the ranked list, where C is the number of shapes in the
category that query belongs to.

• Second Tier (ST): the recall for the top 2(C −1) matches
in the ranked list, where C is the number of shapes in
the category that query belongs to.

• Discounted Cumulative Gain (DCG): a statistic that
attaches more importance to the correct results near the
front of the ranked list than the correct results at the end
of the ranked list, under the assumption that a user is
more likely to consider the retrieved candidates in the
front of the list.

Please refer to [45] for more details about the definition
of NN, FT, ST and DCG if needed. The values of all the
aforementioned metrics range from 0 to 1, and larger values
indicate better performance.

In the 3D object retrieval task, we use two view-based
baseline methods (one is Vector of Aggregated Local Descrip-
tor (VLAD) [49], and the other one is deep feature learned
with Convolutional Neural Network (CNN)). For VLAD, we
use the same pipeline as [50]. The number of depth views is
set to 64, and the codebook size is 2048. For the deep feature,
we utilize the descriptor proposed in [51].

We first demonstrate the performance of different re-ranking
algorithms using the same baseline methods (i.e., VLAD and
deep feature) in Table I, and FT is chosen as the evaluation
metric. When computing SCA, we fix the size of neighborhood
set k1 to 10 for PSB dataset and 17 for WM-SHREC07 dataset,
and the parameter k2 for local enhancement to 4. We report
the performances of some typical re-ranking algorithms (Self
diffusion (SD) [11], Tensor Product Graph (TPG) [17], Locally
Constrained Diffusion Process (LCDP) [8]) in the optimal
parameter setup.

It can be observed that our proposed SCA achieves the
best performance among all the compared re-ranking methods.
SD obtains the worst results since it loses the constraint
of “locality” used in LCDP and TPG. The percent gain in
performance of LCDP and TPG in PSB dataset is not as large
as in WM-SHREC07. It can be explained in two aspects:
the first one is that the baseline in PSB dataset is much
lower than that in WM-SHREC07 dataset, which means that it
will include more noise and outliers in the neighborhood set;
the second one is that the number of objects per category
in PSB dataset is various. By contrast, the distribution of
objects in WM-SHREC07 is exactly balanced, i.e. 20 objects
are assigned to one category. The imbalanced distribution of
objects in PSB dataset makes kNN rule difficult to generalize
well. Nevertheless, our proposed SCA also performs stably
and well in both datasets although kNN is used to define the
neighborhood set.

The comparison with other state-of-the-art algorithms
are presented in Table II. As we can see, our proposed
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SCA achieves the new state-of-the art performance among all
other algorithms for all the four evaluation metrics by fusion
VLAD and deep feature in both datasets. PANORAMA is
one of the most representative 3D shape descriptors in recent
years, and our proposed SCA outperforms it by 8.4% in NN,
22.1% in FT and 20.7% in ST in PSB dataset. In [44], the
performance of PANORAMA is improved by large margins
using Local Relevance Feedback (LRF). LRF also exploits
the contextual contribution as SCA, and the superior results
reveal the effectiveness of our proposed method.

Among the all compared methods, 2D/3D Hybrid [57],
PANORAMA [44] and 3DVFF [59] consider the fusion of
multiple complementary features in the hope of more robust
distance measure. 2D/3D Hybrid just simply concatenates
2D features based on depth buffers and 3D features based
on spherical harmonics, and the dissatisfactory performance
verifies the importance of designing more discriminative
feature fusion methods. 3DVFF employs Multi-Feature
Anchor Manifold that approximates multiple manifolds of
heterogeneous features, which can be assumed as one variant
of diffusion-based re-ranking methods. SCA also leads to a
better retrieval accuracy than 3DVF in DCG (DCG is the
only widely-accepted evaluation metric adopted in [59]).

B. Face Retrieval

We also evaluate the performance of SCA in face retrieval
on YALE face dataset B [47]. YALE face dataset B is a
standard benchmark widely used for face clustering, which
is composed of face images sharing various poses and illu-
mination conditions. In order to keep the comparison fair,
we use the same subset and the same baseline method as
generic diffusion framework [2]. Specifically, 15 subjects with
11 different conditions are gathered to generate a new dataset.
Each image is normalized to 0-mean and 1-variance, and
Euclidean distance between the vectorized representations is
adopted to measure the pairwise dissimilarity directly. The
evaluation metric is bull’s eye score, which counts the recall
before top-15 ranking list.

The baseline bull’s eye score for the selected subset
is 69.48%. Note that our goal is not achieving superior
retrieval performance in this dataset, since better perfor-
mance can be obtained easily by using more discriminative
descriptors, such as LBP [60], etc.. Instead, we focus on
the performance improvement by our proposed re-ranking
method. In [2], a classical branch of re-ranking methods called
diffusion process is summarized, so the comparison with these
methods will be more convincing. Similar to SCA, diffusion-
based re-ranking methods capture the structure of the under-
lying data manifold by using the contextual information. The
primary difference is that they propagate the affinity values
with random walks on a pre-defined graph in an iterative
manner, while SCA does not need the iterative procedure that
is often of great computational cost. We refer the readers to [2]
for more details about diffusion process if necessary.

In Table III, the retrieval performances resulting from other
state-of-the-art methods and our proposed method are reported.
All the numerical results are borrowed from [2] or computed

TABLE III

THE PERFORMANCE COMPARISON WITH OTHER STATE-OF-THE-ART
ALGORITHMS ON THE YALE FACE DATASET B

TABLE IV

THE PERFORMANCE COMPARISON WITH OTHER STATE-OF-THE-ART

ALGORITHMS ON MPEG-7 DATASET

by using the public-available codes. When computing our
sparse contextual activation, we manually set the size of
neighborhood set k1 to 4, and the parameter k2 for local
consistency enhancement to 5.

As we can see from the table, SCA outperforms Self Dif-
fusion (SD) [11], Tensor Product Graph (TPG) [17], Locally
Constrained Diffusion Process (LCDP) [8] by 6.34%, 2.48%
and 2.21%. As for the generic diffusion process, it enumerates
all the variants of diffusion process by using four different
types of initialization, six different types of transition and
matrices and three different update schemes. The bull’s eye
score of the generic version of diffusion process is chosen as
the best performance for all the variants. However, SCA also
achieves 77.80%, which is the best performance among all
re-ranking methods, including the generic diffusion.

C. Shape Retrieval

Finally, we test our method for shape retrieval on MPEG-7
dataset [48]. It consists of 1,400 binary images divided into
70 categories evenly. Bull’s eye score is used to evaluate the
performance, which counts the recall in the top-40 ranking list.
We use the same baseline methods as Co-transduction [29],
where Shape Context (SC) [38] and Inner Distance Shape
Context (IDSC) [39] are used as the raw descriptors.

The comparison with other state-of-the-art algorithms is
presented in Table IV. In order to improve the readability
of the comparison, the table is divided into three parts with
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TABLE V

THE PERFORMANCE COMPARISON WITH STATE-OF-THE-ART METHODS
IN UKBENCH DATASET. THE DIFFERENCE BETWEEN [33]a , [35]a

AND [33]b, [35]b IS THE METHODS WITH SUPERSCRIPT “b”
USE THE ADDITIONAL GRAPH FUSION ALGORITHM PROPOSED

IN [27]. [27]a AND [27]b DENOTE GRAPH PAGERANK
AND GRAPH DENSITY RESPECTIVELY

each part using the same baseline method. The baseline of the
direct sum of SC and IDSC is 92.16%. As we can see, our
proposed SCA leads to the best performance in each part by
setting k1 to 7 and k2 to 4, and improves the baseline method
by a large margin.

D. Natural Image Retrieval

We first demonstrate the performance of SCA for natural
image retrieval in Ukbench image dataset [10], which con-
sists of 10,200 images. The whole dataset is divided into
2,550 categories with only 4 images per category. Each image
is used in turn as a query. The performance is measured by the
average recall of the top four ranked images, referred as N-S
score (maximum is 4). The limited ground-truth images per
category makes it challenging to achieve good performance
for context-based re-ranking methods.

We implement two baseline methods using a local feature
and a holistic feature. For local feature, SIFT [34] descriptors
are extracted at Hessian-affine [62] interest points, and
RootSIFT [22] variant is used. We train the codebook
of size 1M using K-means on the independent Flickr60k
data [42]. The Bag-of-Words (BoW) feature is computed with
hard-assignment and TF-IDF weighting [43]. For holistic
feature, we use the 1000-dimensional HSV color histogram
(20×10×5 bins for H, S, V components) following [27], [33].
The HSV histogram is first normalized by its L1 norm, and
finally each element of the histogram is square rooted. The
baselines of SIFT and HSV histogram are 3.56 and 3.40
respectively.

We compare our proposed SCA with several state-of-the-art
algorithms in Table V. For computing the sparse contextual
activation, the size of neighborhood set k1 is to 4. The
parameter for local enhancement enhancement k2 is set
to 2 empirically.

In order to keep the comparison fair, we first compare
those methods which use only single feature, but

different extra improvements. These selected methods
are L p norm IDF [43], Vector of Aggregated Local
Descriptors (VLAD) [49], Triangulation embedding [63],
Spatial Contextual Weighting (SCW) [64], Tensor Product
Graph (TPG) [17], Burstiness [41], RNN re-ranking [65] and
Contextual Dissimilarity Measure [1].

As shown in Table V, our proposed SCA improves the
baseline of SIFT from 3.56 to 3.69 and improves the base-
line of HSV histogram from 3.40 to 3.56, which makes a
significant gain in performance. The performances of Graph
Transduction (GT) [3] are also implemented by us using the
same features as those of SCA, which are 3.60 for SIFT
feature and 3.53 for HSV histogram respectively. Among those
methods, GT, TPG, RNN re-ranking and CDM follow the
similar principle with our method. They all attach importance
to the local context of a given image in the manifold and
adopt an iterative strategy to update the similarity measure,
but achieve inferior performances compared with SCA, which
does not need to iterate until convergence. It can be drawn
that SCA can get better performances by exploiting a more
reliable distance measure with higher time efficiency.

The performance comparison of the algorithms using multi-
feature is also conducted in Table V. We list nearly all the
feature fusion algorithms which report their N-S scores to
my best knowledge now, including Co-indexing [36], Coupled
Binary Embedding [35], Bayes [66], Co-transduction [29],
CrDP [67], c-MI [33] and Graph Fusion [27].

Graph Fusion is a representative re-ranking algorithm which
deals with multiple input features. The performances of two
variants of Graph Fusion, Graph PageRank and Graph Desnity,
are 3.76 and 3.77 respectively. By contrast, our proposed
feature fusion strategy with SIFT and HSV histogram achieves
3.86 N-S score. Considering that c-MI [33]b and Coupled
Binary Embedding [35]b actually fuse three features (fuse
SIFT and color descriptor at the indexing level, and HSV
histogram descriptor is also combined at the post-processing
level), it seems unfair to compare them with SCA, since we
actually utilize two features only. However, as can be seen
from the table, the performance of SCA is also higher than
both of them. Compared with our baseline methods used here,
we improve the performance from 3.40 (HSV histogram) and
3.56 (SIFT) to 3.86 significantly. The superior performance
demonstrates the discriminative power of our SCA-based
feature fusion algorithm.

E. Discussion

Two important parameters are involved in our method: the
size of neighborhood set k1 in sparse contextual activation
and the size of neighborhood set k2 for local consistency
enhancement. In this section, we will discuss their effect
on the retrieval performance, and compare with the Jaccard
re-ranking to show the performance improvement brought by
SCA simultaneously.

1) The Parameter k1: The performance of standard Jaccard
distance (Eq. (1)) and the proposed sparse contextual activation
(Eq. (7)) with regard to the value of k1 are reported in Fig. 4.
We utilize N-S score for Ukbench dataset and First Tier for
PSB dataset to evaluate the retrieval performance.
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Fig. 4. The impact of the neighborhood set size on retrieval accuracy. N-S score for Ukbench (a), and First Tier for PSB (b) are presented.

Fig. 5. The impact of the parameter k2 in local consistency enhancement on retrieval accuracy. N-S score for Ukbench (a) and First Tier for PSB (b) are
presented.

It can be observed that SCA outperforms the standard
Jaccard distance consistently when the size of neighborhood
set k1 varies, which demonstrates firmly that it is beneficial
to bring the weights into account such that the importance of
top-ranked images is increased. On the other hand, we can
find that when k1 increase, the performance first increases and
drops later after k1 reaches a certain threshold. It is easy to
understand the decreasing of performance when k1 is relatively
larger, owing to the fact that the percentage of false positives
will increase in that case.

2) The Parameter k2: In Fig. 5, we discuss the effect the
parameter used in local consistency enhancement by fixing the
size of neighborhood set to 4 for Ukbench dataset and 10 for
PSB dataset following Section V-D and Section V-A respec-
tively. Note that when k2 is equal to 1, the local consistency
enhancement is not applied at all. Hence, the performances
of SCA and SCA with local consistency enhancement are
identical at the starting point of the curves in Fig. 5.

It is observed that when local consistency enhancement
is applied by using a proper factor k2, the performance
of sparse contextual activation can be improved further.
Such a phenomenon demonstrates our previous analysis in
Section III-D. It should also be mentioned that if a much
larger k2 is used, the performance will decease without
question. Since local consistency enhancement considers
the contributions from the neighbors of the second order,
it is easier to include the negative effects of noise and

outliers compared with only using the direct neighbors
(i.e., the neighbors of the first order). However, we find
local consistency enhancement of great help to improve the
retrieval performance when k2 is small.

3) Metric: Note that our sparse contextual activation is
computed using Eq. (7), a generalized version of Jaccard
distance. Indeed, many other metrics can be used here despite
the fact that these metrics cannot be interpreted well using the
set theory, such as Lr distance,1 χ2 distance2 and Hellinger
distance.3

In Table VI, we list the performances of sparse contextual
activation with LCE or without LCE under different metrics
in PSB dataset. The baseline method is the deep feature
and First Tier is chosen as the evaluation measure. We can
find that the metric defined in Eq. (7) outperforms all the
other evaluation metrics. The performance of the widely-used
Euclidean distance is not satisfactory enough.

4) Discussion on Rank Aggregation: In Fig. 6, we compare
the performances of using low set alone, using high set alone
and using the linear combination of high set and low set. First,
as the figure shows, the performances of high set and low set
reach the peak at different values of k1, and this value for low

1The Lr distance for two SCAs Fq and Fp is (
∑N

i |Fq,i − Fpi |r )
1
r .

2The χ2 distance for two SCAs Fq and Fp is 1
2

∑N
i

(Fq,i −Fp,i )
2

Fq,i +Fp,i
.

3The Hellinger distance for two SCAs Fq and Fp is
∑N

i (
√

Fq,i − √
Fpi )

2.
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Fig. 6. The discussion about rank aggregation. The performances of high set, low set and their combination are presented. N-S score for Ukbench (a),
First Tier for PSB (b) are presented.

TABLE VI

THE PERFORMANCE COMPARISON OF SCA UNDER DIFFERENT METRICS

Fig. 7. The influence of weights on PSB dataset.

set is usually smaller than that for high set. Second, the two
curves that represents the performance of high set and low
set have a intersection point, before which the performance of
low set is superior to high set. At last, the linear combination
of high set and low set is always better than using either one
alone.

5) Feature Weight: In Eq. (18), high set and low set are
combined linearly with equal weights for rank aggregation
task. To clarify the influence of weight, an experiment on
PSB dataset is conducted by setting the weight of high set
to w, and that of low set to 1 − w. w ranges from 0 to 1
with a step size of 0.1, and the influence of w on retrieval
performance (First Tier) is given in Fig. 7. As the figure shows,
a linear combination of high set and low set outperforms their
individual counterpart (w = 0 or 1), which is consistent to
previous analysis. The best performance is achieved when

w is around 0.5. However, the performance only changes a
little or remains the same when w shifts to 0.4 or 0.6. Hence,
we set the default value of w to 0.5 for simplicity. Note
that one can learn the weights automatically if some prior
information (e.g. the baseline performances) is known.

F. Complexity Analysis

Considering that SCA is a post-processing procedure that
focuses on re-ranking instead of ranking initialization, we only
analyse the time efficiency and memory cost after the original
ranking are given. The operation in the pre-processing, such
as feature extraction, feature quantization, pairwise distance
computation, etc., are beyond the scope of our concern.

1) Time Complexity: Given an image collection with N
elements and their pairwise distances known, the computation
of the sparse contextual activation for an given image xq

requires the computational complexity O(k1), where k1 is
the size of the neighborhood set. When local consistency
enhancement determined by the parameter k2 is applied, the
computation time cost for SCA is equivalent to O(k2 × k1).
We can find that the initiation of SCA is independent of the
image collection size N , but related to the size of the local
distribution around xq on the manifold. Usually, the values of
k1 and k2 are much smaller than N , which indicates that the
computation of SCA for a single image can be assumed to
achieve in O(1) efficiently.

As for re-ranking with SCA, the direct computation of the
distance between xq and all the other images in the database

requires O(2 × N2). However, the time complexity can be
reduced significantly by using inverted index as presented
in Section III-C. Embedded with inverted index, the M I N
operation needs O(M×k1) through Eq. (11) in the worst case,
where M denotes the number of images that have overlaps in
neighborhood sets with xq . M AX only needs O(M) through
Eq. (12). In summary, the time complexity is reduced from
O(2 × N2) to O (M × (k1 + 1)) by introducing the inverted
index. In fact, the value of M is also much smaller than N
(e.g., for the HSV histogram in Ukbench dataset, the average
value of M is merely 7.46).

All our experiments are carried out on a desktop machine
with an Intel(R) Core(TM) i5 CPU (3.40 GHz) and
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TABLE VII

THE COMPARISON OF AVERAGE RE-RANKING TIME

16 GB memory. In Ukbench dataset, the generation of SCA
takes 0.14ms and local consistency enhancement takes 0.36ms
per image. It takes 0.33s to build the inverted index for
the whole dataset. For a given query, the average cost for
re-ranking is only 0.39ms.

Many previous re-ranking algorithms (e.g. [8], [17], [29])
are time-consuming due to their high time complexity (O(N3)
in most cases). They usually need an iterative procedure to
spread the affinity values on a huge graph which establishes
the relationship among all the images. Table VII compares
the average time for re-ranking of some typical algorithms,
including Jaccard re-ranking defined in Eq. (1). As the table
shows, SCA reduces the time cost of Jaccard re-ranking by
more than 8,000 times in Ukbench dataset when inverted index
is applied. Compared with the two representative diffusion-
based re-ranking methods, SCA is 90 times faster than LCDP,
and 9,800 times faster than TPG. It indicates that our proposed
re-ranking method has the potential for large scale re-ranking
task.

2) Space Complexity: The scale of the inverted index is
equivalent to the number of images in the database, which
indicates the space complexity of SCA is O(N).

For each entry in the inverted index used for re-ranking,
we use 4 bytes to store one image index. 4 bytes (single
format) are used to denote the activation for a certain image.
On the Ukbench dataset, it only takes 65.2KB to save the
inverted index in our implementation. Considering the big
improvement on the computational efficiency, the minor extra
memory cost can be tolerated.

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose an extremely efficient algorithm
called Sparse Contextual Activation (SCA) for visual
re-ranking. SCA is a merely single vector that encodes the
contextual distribution for an image. The re-ranking procedure
can be simply conducted by vector comparison using
generalized Jaccard distance. For the first time, inverted index
is introduced into re-ranking task, which makes is possible
that re-ranking for a single query can be finished within
one millisecond. Local Consistency Enhancement (LCE)
is also developed to improve the performance of SCA
further. The experimental results on PSB dataset (3D object),
WM-SHREC07 (3D competition), YALE dataset B (face),
MPEG-7 dataset (shape) and Ukbench dataset (natural image)
demonstrate the effectiveness and efficiency of the proposed
method.

Note that we design an inverted index for visual re-ranking,
so an efficient method about the dynamical of insertion,
deletion and modification should be taken into consideration.

Meanwhile, since SCA is defined in the context, it requires for
accurate contextual distribution if possible. So does it benefit
from adding more extra images or artificial ghost points [68] to
densify the feature space? Moreover, as SCA provides a more
efficient and effective similarity measure similar to diffusion
process, it can be potentially applied to other important tasks
such as image segmentation [11], [12], [69], image matching/
registration [70], [71], visual object tracking [13], and analysis
of medical data [72]. We leave all these problems for the future
work.

REFERENCES

[1] H. Jegou, C. Schmid, H. Harzallah, and J. Verbeek, “Accurate image
search using the contextual dissimilarity measure,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 32, no. 1, pp. 2–11, Jan. 2010.

[2] M. Donoser and H. Bischof, “Diffusion processes for retrieval revisited,”
in Proc. CVPR, Jun. 2013, pp. 1320–1327.

[3] X. Bai, X. Yang, L. J. Latecki, W. Liu, and Z. Tu, “Learning context-
sensitive shape similarity by graph transduction,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 32, no. 5, pp. 861–874, May 2010.

[4] J. Sivic and A. Zisserman, “Video Google: A text retrieval
approach to object matching in videos,” in Proc. ICCV, Oct. 2003,
pp. 1470–1477.

[5] J. Wang, Y. Li, X. Bai, Y. Zhang, C. Wang, and N. Tang, “Learning
context-sensitive similarity by shortest path propagation,” Pattern Recog-
nit., vol. 44, nos. 10–11, pp. 2367–2374, Oct./Nov. 2011.

[6] D. C. G. Pedronette, J. Almeida, and R. da S. Torres, “A scalable re-
ranking method for content-based image retrieval,” Inf. Sci., vol. 265,
pp. 91–104, May 2014.

[7] L. Luo, C. Shen, C. Zhang, and A. van den Hengel, “Shape similarity
analysis by self-tuning locally constrained mixed-diffusion,” IEEE Trans.
Multimedia, vol. 15, no. 5, pp. 1174–1183, Aug. 2013.

[8] X. Yang, S. Koknar-Tezel, and L. J. Latecki, “Locally constrained
diffusion process on locally densified distance spaces with applications
to shape retrieval,” in Proc. CVPR, Jun. 2009, pp. 357–364.

[9] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman, “Object
retrieval with large vocabularies and fast spatial matching,” in Proc.
CVPR, Jun. 2007, pp. 1–8.

[10] D. Nistér and H. Stewénius, “Scalable recognition with a vocabulary
tree,” in Proc. CVPR, 2006, pp. 2161–2168.

[11] B. Wang and Z. Tu, “Affinity learning via self-diffusion for
image segmentation and clustering,” in Proc. CVPR, Jun. 2012,
pp. 2312–2319.

[12] X. Wang, Y. Tang, S. Masnou, and L. Chen, “A global/local affinity
graph for image segmentation,” IEEE Trans. Image Process., vol. 24,
no. 4, pp. 1399–1411, Apr. 2015.

[13] Y. Zhou, X. Bai, W. Liu, and L. J. Latecki, “Fusion with diffusion for
robust visual tracking,” in Proc. NIPS, 2012, pp. 2987–2995.

[14] P. Kontschieder, M. Donoser, and H. Bischof, “Beyond pairwise shape
similarity analysis,” in Proc. ACCV, 2009, pp. 655–666.

[15] A. Egozi, Y. Keller, and H. Guterman, “Improving shape retrieval by
spectral matching and meta similarity,” IEEE Trans. Image Process.,
vol. 19, no. 5, pp. 1319–1327, May 2010.

[16] J. J.-Y. Wang and Y. Sun, “From one graph to many: Ensemble
transduction for content-based database retrieval,” Knowl.-Based Syst.,
vol. 65, pp. 31–37, Jul. 2014.

[17] X. Yang, L. Prasad, and L. J. Latecki, “Affinity learning with diffusion on
tensor product graph,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 35,
no. 1, pp. 28–38, Jan. 2013.

[18] Y. Chen, X. Li, A. Dick, and R. Hill, “Ranking consistency for
image matching and object retrieval,” Pattern Recognit., vol. 47, no. 3,
pp. 1349–1360, Mar. 2014.

[19] D. C. G. Pedronette and R. da S. Torres, “Image re-ranking and rank
aggregation based on similarity of ranked lists,” Pattern Recognit.,
vol. 46, no. 8, pp. 2350–2360, Aug. 2013.

[20] D. C. G. Pedronette, O. A. B. Penatti, and R. da S. Torres, “Unsupervised
manifold learning using reciprocal kNN Graphs in image re-ranking and
rank aggregation tasks,” Image Vis. Comput., vol. 32, no. 2, pp. 120–130,
Feb. 2014.

[21] O. Chum, A. Mikulik, M. Perdoch, and J. Matas, “Total recall II: Query
expansion revisited,” in Proc. CVPR, Jun. 2011, pp. 889–896.



1068 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 25, NO. 3, MARCH 2016

[22] R. Arandjelovic and A. Zisserman, “Three things everyone should
know to improve object retrieval,” in Proc. CVPR, Jun. 2012,
pp. 2911–2918.

[23] R. Fagin, R. Kumar, and D. Sivakumar, “Comparing top k lists,” SIAM
J. Discrete Math., vol. 17, no. 1, pp. 134–160, 2003.

[24] W. Webber, A. Moffat, and J. Zobel, “A similarity measure for
indefinite rankings,” ACM Trans. Inf. Syst., vol. 28, no. 4, p. 20,
Nov. 2010.

[25] R. R. Coifman and S. Lafon, “Diffusion maps,” Appl. Comput. Harmon.
Anal., vol. 21, no. 1, pp. 5–30, Jul. 2006.

[26] P. V. Gehler and S. Nowozin, “On feature combination for
multiclass object classification,” in Proc. ICCV, Sep./Oct. 2009,
pp. 221–228.

[27] S. Zhang, M. Yang, T. Cour, K. Yu, and D. N. Metaxas,
“Query specific fusion for image retrieval,” in Proc. ECCV, 2012,
pp. 660–673.

[28] S. Zhang, M. Yang, T. Cour, K. Yu, and D. N. Metaxas, “Query specific
rank fusion for image retrieval,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 37, no. 4, pp. 803–815, Apr. 2015.

[29] X. Bai, B. Wang, C. Yao, W. Liu, and Z. Tu, “Co-transduction for shape
retrieval,” IEEE Trans. Image Process., vol. 21, no. 5, pp. 2747–2757,
May 2012.

[30] Z.-H. Zhou and M. Li, “Tri-training: Exploiting unlabeled data using
three classifiers,” IEEE Trans. Knowl. Data Eng., vol. 17, no. 11,
pp. 1529–1541, Nov. 2005.

[31] Z.-H. Zhou and M. Li, “Semi-supervised regression with Co-training,”
in Proc. IJCAI, 2005, pp. 908–913.

[32] S. Zhang, J. Huang, H. Li, and D. N. Metaxas, “Automatic image
annotation and retrieval using group sparsity,” IEEE Trans. Syst., Man,
Cybern. B, Cybern., vol. 42, no. 3, pp. 838–849, Jun. 2012.

[33] L. Zheng, S. Wang, Z. Liu, and Q. Tian, “Packing and padding: Coupled
multi-index for accurate image retrieval,” in Proc. CVPR, Jun. 2014,
pp. 1947–1954.

[34] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
Int. J. Comput. Vis., vol. 60, no. 2, pp. 91–110, 2004.

[35] L. Zheng, S. Wang, and Q. Tian, “Coupled binary embedding for large-
scale image retrieval,” IEEE Trans. Image Process., vol. 23, no. 8,
pp. 3368–3380, Aug. 2014.

[36] S. Zhang, M. Yang, X. Wang, Y. Lin, and Q. Tian, “Semantic-
aware Co-indexing for image retrieval,” in Proc. ICCV, Dec. 2013,
pp. 1673–1680.

[37] S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction by
locally linear embedding,” Science, vol. 290, no. 5500, pp. 2323–2326,
Dec. 2000.

[38] S. Belongie, J. Malik, and J. Puzicha, “Shape matching and object
recognition using shape contexts,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 24, no. 4, pp. 509–522, Apr. 2002.

[39] H. Ling and D. W. Jacobs, “Shape classification using the
inner-distance,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 29, no. 2,
pp. 286–299, Feb. 2007.

[40] J. Wang, X. Bai, X. You, W. Liu, and L. J. Latecki, “Shape matching and
classification using height functions,” Pattern Recognit. Lett., vol. 33,
no. 2, pp. 134–143, 2012.

[41] H. Jegou, M. Douze, and C. Schmid, “On the burstiness of visual
elements,” in Proc. CVPR, Jun. 2009, pp. 1169–1176.

[42] H. Jégou, M. Douze, and C. Schmid, “Hamming embedding and weak
geometric consistency for large scale image search,” in Proc. ECCV,
2008, pp. 304–317.

[43] L. Zheng, S. Wang, and Q. Tian, “L p -norm IDF for scalable image
retrieval,” IEEE Trans. Image Process., vol. 23, no. 8, pp. 3604–3617,
Aug. 2014.

[44] P. Papadakis, I. Pratikakis, T. Theoharis, and S. J. Perantonis,
“PANORAMA: A 3D shape descriptor based on panoramic views for
unsupervised 3D object retrieval,” Int. J. Comput. Vis., vol. 89, nos. 2–3,
pp. 177–192, Sep. 2010.

[45] P. Shilane, P. Min, M. M. Kazhdan, and T. A. Funkhouser,
“The princeton shape benchmark,” in Proc. SMI, Jun. 2004,
pp. 167–178.

[46] D. Giorgi, S. Biasotti, and L. Paraboschi, “Shape retrieval contest
2007: Watertight models track,” in Proc. SHREC Competition, 2007,
pp. 1–8.

[47] A. S. Georghiades, P. N. Belhumeur, and D. Kriegman, “From few to
many: Illumination cone models for face recognition under variable
lighting and pose,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 23,
no. 6, pp. 643–660, Jun. 2001.

[48] L. J. Latecki, R. Lakamper, and T. Eckhardt, “Shape descriptors for non-
rigid shapes with a single closed contour,” in Proc. CVPR, Jun. 2000,
pp. 424–429.

[49] H. Jégou, F. Perronnin, M. Douze, J. Sánchez, P. Pérez, and C. Schmid,
“Aggregating local image descriptors into compact codes,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 34, no. 9, pp. 1704–1716,
Sep. 2012.

[50] H. Tabia, D. Picard, H. Laga, and P.-H. Gosselin, “Compact vectors of
locally aggregated tensors for 3D shape retrieval,” in Proc. 3DOR, 2013,
pp. 17–24.

[51] S. Bai, X. Bai, W. Liu, and F. Roli, “Neural shape codes for 3D model
retrieval,” Pattern Recognit. Lett., vol. 65, pp. 15–21, Nov. 2015.

[52] D.-Y. Chen, X.-P. Tian, Y.-T. Shen, and M. Ouhyoung, “On visual
similarity based 3D model retrieval,” Comput. Graph. Forum, vol. 22,
no. 3, pp. 223–232, Sep. 2003.

[53] H. Tabia, M. Daoudi, J.-P. Vandeborre, and O. Colot, “A new
3D-matching method of nonrigid and partially similar models using
curve analysis,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 4,
pp. 852–858, Apr. 2011.

[54] D. V. Vranic, “DESIRE: A composite 3D-shape descriptor,” in Proc.
ICME, Jul. 2005, pp. 962–965.

[55] M. Liu, B. C. Vemuri, S.-I. Amari, and F. Nielsen, “Shape retrieval using
hierarchical total Bregman soft clustering,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 34, no. 12, pp. 2407–2419, Dec. 2012.

[56] H. Tabia, H. Laga, D. Picard, and P.-H. Gosselin, “Covariance descrip-
tors for 3D shape matching and retrieval,” in Proc. CVPR, Jun. 2014,
pp. 4185–4192.

[57] P. Papadakis, I. Pratikakis, T. Theoharis, G. Passalis, and S. J. Perantonis,
“3D object retrieval using an efficient and compact hybrid shape
descriptor,” in Proc. 3DOR, 2008, pp. 9–16.

[58] X. Bai, C. Rao, and X. Wang, “Shape vocabulary: A robust and efficient
shape representation for shape matching,” IEEE Trans. Image Process.,
vol. 23, no. 9, pp. 3935–3949, Sep. 2014.

[59] T. Furuya and R. Ohbuchi, “Fusing multiple features for shape-based
3d model retrieval,” in Proc. BMVC, 2014, pp. 1–12.

[60] T. Ojala, M. Pietikäinen, and T. Mäenpää, “Multiresolution gray-scale
and rotation invariant texture classification with local binary patterns,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 7, pp. 971–987,
Jul. 2002.

[61] D. C. G. Pedronette and R. da S. Torres, “Exploiting pairwise recommen-
dation and clustering strategies for image re-ranking,” Inf. Sci., vol. 207,
pp. 19–34, Nov. 2012.

[62] K. Mikolajczyk and C. Schmid, “Scale & affine invariant interest
point detectors,” Int. J. Comput. Vis., vol. 60, no. 1, pp. 63–86,
Oct. 2004.

[63] H. Jégou and A. Zisserman, “Triangulation embedding and demo-
cratic aggregation for image search,” in Proc. CVPR, Jun. 2014,
pp. 3310–3317.

[64] X. Wang, M. Yang, T. Cour, S. Zhu, K. Yu, and T. X. Han, “Contextual
weighting for vocabulary tree based image retrieval,” in Proc. ICCV,
Nov. 2011, pp. 209–216.

[65] D. Qin, S. Gammeter, L. Bossard, T. Quack, and L. Van Gool, “Hello
neighbor: Accurate object retrieval with k-reciprocal nearest neighbors,”
in Proc. CVPR, Jun. 2011, pp. 777–784.

[66] L. Zheng, S. Wang, W. Zhou, and Q. Tian, “Bayes merging of multiple
vocabularies for scalable image retrieval,” in Proc. CVPR, Jun. 2014,
pp. 1963–1970.

[67] B. Wang, J. Jiang, W. Wang, Z.-H. Zhou, and Z. Tu, “Unsuper-
vised metric fusion by cross diffusion,” in Proc. CVPR, Jun. 2012,
pp. 2997–3004.

[68] X. Yang, X. Bai, S. Köknar-Tezel, and L. J. Latecki, “Densifying
distance spaces for shape and image retrieval,” J. Math. Imag. Vis.,
vol. 46, no. 1, pp. 12–28, May 2013.

[69] C. Li, C. Xu, C. Gui, and M. D. Fox, “Distance regularized level set
evolution and its application to image segmentation,” IEEE Trans. Image
Process., vol. 19, no. 12, pp. 3243–3254, Dec. 2010.

[70] J. Ma, J. Zhao, J. Zhao, J. Tian, A. Yuille, and Z. Tu, “Robust point
matching via vector field consensus,” IEEE Trans. Image Process.,
vol. 23, no. 4, pp. 1706–1721, Apr. 2014.

[71] J. Ma, W. Qiu, J. Zhao, Y. Ma, A. L. Yuille, and Z. Tu, “Robust L2 E
estimation of transformation for non-rigid registration,” IEEE Trans.
Signal Process., vol. 63, no. 5, pp. 1115–1129, Mar. 2015.

[72] B. Wang et al., “Similarity network fusion for aggregating data types
on a genomic scale,” Nature Methods, vol. 11, no. 3, pp. 333–337,
Jan. 2014.



BAI AND BAI: SCA FOR EFFICIENT VISUAL RE-RANKING 1069

Song Bai (S’01) received the B.S. degree in
electronics and information engineering from the
Huazhong University of Science and Technology,
Wuhan, China, in 2013, where he is currently
pursuing the Ph.D. degree with the School of
Electronic Information and Communications. His
research interests include shape analysis, image clas-
sification, and retrieval.

Xiang Bai (SM’07) received the B.S., M.S., and
Ph.D. degrees from the Huazhong University of
Science and Technology (HUST), Wuhan, China,
in 2003, 2005, and 2009, respectively, all in
electronics and information engineering. He is
currently a Professor with the School of Electronic
Information and Communications, HUST. He is also
the Vice Director of the National Center of Anti-
Counterfeiting Technology with HUST. His research
interests include object recognition, shape analysis,
scene text recognition, and intelligent systems.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


