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a b s t r a c t 

Due to the ability of capturing the geometry structure of data manifold, context-sensitive similarity has 

demonstrated impressive performances in the retrieval task. The key idea of context-sensitive similarity 

is that the similarity between two data points can be more reliably estimated with the local context of 

other points in the affinity graph. Therefore, neighborhood selection is a crucial factor for those algo- 

rithms, which affects the performance dramatically. In this paper, we propose a new algorithm called 

Smooth Neighborhood (SN) that mines the neighborhood structure to satisfy the manifold assumption. 

By doing so, nearby points on the underlying manifold are guaranteed to yield similar neighbors as much 

as possible. Moreover, SN is adjusted to tackle multiple affinity graphs by imposing a weight learning 

paradigm, and this is the primary difference compared with related works which are only applicable 

with one affinity graph. Finally, we integrate SN with Sparse Contextual Activation (SCA), a representative 

context-sensitive similarity proposed recently. Extensive experimental results and comparisons manifest 

that with the neighborhood structure generated by SN, the proposed framework can yield state-of-the-art 

performances on shape retrieval, image retrieval and 3D model retrieval. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

Object retrieval [1] is an important topic in pattern recogni-

ion [2] , computer vision [3] , multimedia computing [4,5] and ma-

hine learning, which has been investigated for decades. A typi-

al retrieval system receives a query data as its input, and outputs

he searching results which are expected to be visually similar to

he given query. Therefore, the crucial issue in object retrieval is

o define a reliable similarity between the query object and the

atabase elements. In most cases, visual descriptors that are ro-

ust to common deformations (e.g., rotation, occlusion, illumina-

ion) are designed to assign each object a vectorial representation.

hen, the pairwise matching between objects can be done in the

uclidean distance. 

In recent years, context-sensitive similarity [6,7] has attracted

uch attention due to its superior performances in object retrieval,

hich does not solely rely on the pairwise matching. These ap-
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roaches have a very diverse nomenclature, such as contextual dis-

imilarity measure [8] , graph transduction [9–11] , affinity learn-

ng [12,13] , ranking list comparison [2,14,15] , re-ranking [16–18] .

owever, the inherent principles of most those algorithms are al-

ost the same, that is, the similarity between two data points can

e more accurately measured by taking the underlying manifold

tructure into account. In order to specify the differences among

hem systematically, Donoser and Bischof, [19] provide a generic

ramework called Diffusion Process and a thorough comparison of

ost aforementioned algorithms experimentally. Diffusion process 

s usually operated on an affinity graph, with the nodes represent-

ng data points and the edge weights denoting the pairwise simi-

arities between two adjacent nodes. In fact, the affinity graph de-

nes a data manifold implicitly, then the similarities are diffused

long the geodesic path of the manifold. 

As one of the most important conclusions quoted from Donoser

nd Bischof [19] , it is crucial to constrain the diffusion process lo-

ally, since diffusion process is susceptible to noise edges in the

ffinity graph. The experimental observation supports the “local-

ty” assumption in manifold learning [20] , that each data point and

ts neighbors lie on a linear patch of the manifold. It means that

nly quite short distances are reliable since they tend to associate
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Fig. 1. The illustration of the proposed method with two similarity measures. For each pair of objects ( x i , x j ) having similarity W 

(v ) 
i j 

( v = 1 , 2 ), we learn their indicator 

functions on neighbor selections, which is constrained by the similarities. Then, the resulted costs can be used, in turn, to learn the weights of those similarities. 
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with short geodesic distances along the data manifold. As a con-

sequence, the nodes that diffusion process selects to spread the

similarities on the affinity graph are usually the neighbors of the

query which have large similarities (or small dissimilarities) with

it. Hence, it is of great importance to construct robust neighbor-

hood structures so that diffusion process can be performed in a

proper way. 

The simplest way to establish the neighborhood structure is k-

Nearest Neighbor (kNN) rule. Given a certain query, kNN rule se-

lects K nodes with the largest edge weights to the query as its

neighborhood. Some variants of kNN are also proposed, such as ε-

neighbors, symmetric kNN, Mutual kNN [21] (also named as recip-

rocal kNN in [22,23] ). As extensively proven in [21] , kNN is prone

to including noise edges and nodes, thus leading to unsatisfactory

retrieval performances. To overcome its defect, Dominant Neigh-

borhood (DN) is proposed in [12] based on the analysis of domi-

nant sets, and Consensus of kNN (CN) is proposed in [24] by ex-

ploiting the consensus information of kNN. 

However, although these neighborhood analysis algorithms are

embedded into some variants of diffusion process, they themselves

do not capture the geometry of the data manifold. That is to say,

they cannot preserve the property of local consistency that nearby

points on the manifold are guaranteed to yield the same neigh-

bors. For example, it usually occurs that two points belong to the

same dense cluster, while they have no common neighbors if kNN

rule or DN is used. In context-based retrieval, this problem is first

proposed in [25] , and later emphasized again in [19] . Neverthe-

less, they only alleviate the problem to a certain extent by localiz-

ing the diffusion process using kNN on both sides (query side and

database side), and do not intend to tackle the problem seriously. 

Moreover, previous works are only applicable with one affinity

graph. When multiple affinity graphs are given, it becomes more

challenging to accurately construct the neighborhood structures.

Therein, the difficulties lie in two aspects. First, it is problematic

to determine the weights of affinity graphs, which can distinguish

the discriminative capacity of different similarity measures. Sec-

ond, it is hard to aggregate the neighborhood structures generated

with different affinity graphs, especially considering that retrieval

is usually defined as an unsupervised task without prior knowl-

edge. Of course, one can simply use a linear combination of multi-

ple affinity graphs with equal weights. However, as demonstrated

in our experiments, it is a suboptimal solution since the comple-

mentary nature among multiple similarities is neglected. 

In this paper along with its earlier conference version [26] , we

propose an algorithm called Smooth Neighborhood (SN) specifi-

cally for neighborhood structure mining. As illustrated in Fig. 1 ,

the motivation of SN is that the indicator functions can be defined

s  
o reveal the behavior of neighbor selection on affinity graphs thus

ielding a selecting cost for each graph, then the resulted costs can

e used, in turn, to learn the weights of those affinity graphs in an

nsupervised manner. Apart from related works, our primary con-

ributions can be divided into three parts: 

1. SN enables the neighbor selection to vary smoothly with re-

spect to the local geometry of the data manifold, thus the input

similarity can be sufficiently reflected in the behavior of neigh-

bor selection. 

2. SN is suitable to deal with more than one affinity graph. It

learns a shared neighborhood structure and the importance of

multiple affinity graphs in a unified framework. Therefore, the

weight learning procedure and the neighborhood aggregation

procedure can be done simultaneously. 

3. Instead of using some heuristic rules that stem from empirical

observations (e.g., Mutual kNN), we give a formal formulation

to SN and derive an iterative solution to the optimization prob-

lem with proven convergence. 

Compared with the conference version, the work (1) gives a

eeper analysis on the motivation and the difference from relevant

orks; (2) supplements the properties of SN, such as the proof

f convergence and convexity; (3) provides more thorough experi-

ental evaluations with different types of data pattern, such as 3D

odel retrieval. 

The rest of paper is organized as follows. In Section 2 , we re-

iew some representative algorithms which have a close relation-

hip with SN. The formulation and optimization of SN are given in

ection 3 . In Section 4 , the effectiveness of SN is verified with thor-

ugh experiments and comparisons on shape retrieval, image re-

rieval and 3D model retrieval. Conclusions are given in Section 5 . 

. Related work 

Tremendous developments in context-sensitive similarities ad-

ance image and shape retrieval remarkably. A family of algorithms

alled diffusion process is proposed in the literature, such as Graph

ransduction [9] , Locally Constrained Diffusion Process (LCDP) [25] ,

ocally Constrained Mixed Diffusion (LCMD) [27] , Tensor Product

raph Diffusion (TPG) [12] , Shortest Path Propagation (SSP) [10] ,

raph-PageRank [17] , etc. In the survey paper [19] , most of these

pproaches are elegantly summarized in a unified framework. 

As shown in [19] , a proper selection of neighbors ensures the

iffusion process to work well in real cases. However, most vari-

nts of diffusion process use k-Nearest Neighbor (kNN) rule for its

implicity. Although [19] also uses kNN rule, it points out that it is

till an open issue to select a reasonable local neighborhood. Re-
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Y  
ated to this task, there are two representative algorithms in re-

ent years, i.e., Dominant Neighborhood (DN) [12] and Consensus

f kNN (CN) [24] . Here, we briefly review their motivations and

ormulations to better highlight the contribution of this work. 

Given a collection of images X = { x 1 , x 2 , . . . , x N } , we can con-

truct an undirect graph G = (X, W ) , where the nodes of the graph

re images and W ∈ R 

N×N is the graph adjacency matrix with

 ij ∈ W measuring the strength of the edge linking x i and x j . The

roblem to be solved now is to discover a neighborhood set with

igh confidences for a given node x i ∈ X . The confidence scores

re usually recorded in an indicator vector Y i = [ y i 1 , y i 2 , . . . , y iN ] ∈
 

1 ×N . 

DN borrows the idea of dominant set proposed in [28] and

eems that the dominant neighbors of a given image, as a subset

f its kNN, should correspond to a maximal clique in the affinity

raph. It is formally defined as 

ax 
Y i 

Y T i W Y i , s.t. Y i ≥ 0 , Y i 1 

T = 1 , (1)

here 1 ∈ R 

1 ×N is a row vector with all elements equal to 1.

he indicator function Y i is subsequently learned by the replicator

quation [29] , as 

 

(t+1) 
i, j 

= y (t) 
i, j 

(
W Y (t) 

i 

)
j 

Y (t) 
i 

T 
W Y (t) 

i 

, j = 1 , 2 , . . . , N, (2)

here t denotes the number of iterations. As demonstrated in [29] ,

he update scheme presented in Eq. (2) is guaranteed to converge

o a local maximizer after sufficient iterations. 

Although DN achieves some improvements in retrieval perfor-

ances, it still has some severe disadvantages. For example, it is

rone to getting stuck at wrong local optima. In [24] , a thorough

nalysis on DN is given and a new simple yet effective algorithm

alled CN is proposed. CN keeps track of the times that an image

air appears together among all rounds of kNN. The principle of CN

s that if two images are similar, they tend to appear in the kNN of

ther images much more frequently. Instead of explicitly learning

he indicator function Y , CN defines a consensus matrix C ∈ R 

N×N .

he update scheme of C is shown in Algorithm 1 . Afterwards, the

Algorithm 1: The pseudocode of consensus of kNN. 

Input: 

W ∈ R 

N×N : the affinity matrix; 

Output: 

C ∈ R 

N×N : the consensus matrix. 

begin 

Initialize C = 0 ; 

for i = 1 : N do 

Obtain kN N (x i ) by applying k-nearest neighbor rule to 

W ; 

for p = 1 : N do 

for q = p + 1 : N do 

if x p ∈ kN N (x i ) ~and~x q ∈ kN N (x i ) then 

C(p, q ) = C(p, q ) + 1 ; 

C(q, p) = C(q, p) + 1 ; 

end 

end 

end 

end 

return C 
end 

ndicator function Y can be obtained via row-normalizing C . It is

estified that CN can achieve quite stable performances compared

ith DN, especially with larger neighborhood size. However, it still
acks a theoretical guarantee, making it difficult to generalize well

n diverse data structures. 

As a smooth operator to preserve the local structure of data

anifold, graph Laplacian has been applied to various applications,

uch as feature coding [30] , feature selection [31] , image annota-

ion [32] , semi-supervised learning [33] , etc. The proposed algo-

ithm, called Smooth Neighborhood (SN), is essentially based on

he usage of graph Laplacian. It interprets the procedure of neigh-

or selection in a probabilistic manner similar to DN. 

. Proposed method 

As analyzed above, neither the simplest k-Nearest Neighbor

kNN) rule nor some more advanced algorithms (e.g., Dominant

eighborhood [12] and Consensus of kNN [24] ) cannot satisfy the

anifold assumption. To remedy this, we propose a robust algo-

ithm to select neighbors in an unsupervised way, formally defined

s 

in 

Y 

N ∑ 

i< j 

w i j ‖ Y i − Y j ‖ 

2 + μ
N ∑ 

i =1 

‖ Y i − I i ‖ 

2 , (3)

here Y i = [ y i 1 , y i 2 , . . . , y iN ] ∈ R 

1 ×N is the indicator function of x i 
hat describes the probability distribution of its neighbors, that is,

 ij ∈ [0, 1] measures the likelihood of x j being the true neighbor of

 i . Y i has exactly the same meaning as the indicator vector used in

ominant neighborhood [12] . I i ∈ R 

1 ×N is the i th row of an identity

atrix I , indicating that x i initializes itself as its nearest neighbor. 

As can be seen from Eq. (3) , SN holds two assumptions for

he behavior of neighbor selection. The left term emphasizes that

he selection of neighbors should be smooth along the underly-

ng manifold structure, i.e., two nearby points (large w ij ) x i and x j 
hould yield similar neighbors, that is, their indicator functions Y i 
nd Y j should have a small distance. The right term emphasizes

hat no matter how we update the indicator Y i for node x i , it shall

till enforce itself as its neighbor as much as possible. The trade-off

etween the two terms is balanced by the regularization parame-

er μ> 0, which is determined empirically. 

Suppose given M ≥ 2 affinity graphs G (v ) = 

(
X, W 

(v ) 
)M 

v =1 
, we

ow begin to study how to select neighbors smoothly on multiple

ffinity graphs. To this end, we impose a weight learning paradigm

nto Eq. (3) to measure the importance of graphs, thus leading to

ur final objective function 

min 

α,Y 

M ∑ 

v =1 

α(v ) γ
N ∑ 

i< j 

w 

(v ) 
i j 

‖ Y i − Y j ‖ 

2 + μ
N ∑ 

i =1 

‖ Y i − I i ‖ 

2 , s.t. 

M ∑ 

v =1 

α(v ) = 1 , 0 ≤ α(v ) ≤ 1 , (4) 

here α = { α(1) , α(2) , . . . , α(M) } is the weight of M affinity graphs,

nd γ > 1 is a weight controller that adjusts the weight distribu-

ion across multiple affinity graphs. 

Three noteworthy comments should be made here. First, weight

earning procedure in Eq. (4) is implemented by adding α( v ) γ to

he objective function, instead of using α( v ) directly. The reason be-

ind this choice is that if α( v ) is used, the optimal solution of α is
(v ) = 1 for the affinity graph with minimum cost and α(v ) = 0 for

he other graphs, in other words, only the smoothest affinity graph

s actually used. It is not a good behavior since the complemen-

ary nature among different affinity graphs is neglected. By using

n additional exponential variable γ , the objective function is not

inear with respect to α. Thus, one can easily adjust the weight

istribution of these affinity graphs by varying γ . 

Second, one may note that we do not set M indicator functions

 

(v ) 
i 

associated with different affinity graphs G (v ) . Instead, only a
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shared indicator function Y i is utilized for a given node x i . Such

a setup has an inborn advantage that the consensus information

among these affinity graphs can be easily exploited, while the triv-

ial aggregation of M indicator functions can be avoided afterwards.

In other words, only one indicator function Y i can be directly at-

tained to define the neighborhood structure of x i , though multiple

affinity graphs are used. Last, Eq. (4) is equivalent to Eq. (3) when

M = 1 . As a result, Eq. (4) can be directly applied with an arbitrary

number of input affinity graphs without modifications. 

3.1. Optimization 

For the sake of notation convenience, the objective function in

Eq. (4) can be re-written in matrix form as 

J = 

M ∑ 

v =1 

α(v ) γ T r 
(
Y T L (v ) Y 

)
+ μ‖ Y − I‖ 

2 
F , (5)

where Y = [ Y T 
1 
, Y T 

2 
, . . . , Y T 

N 
] 
T ∈ R 

N×N , L (v ) ∈ R 

N×N is the v th graph

Laplacian matrix defined as L (v ) = D 

(v ) − W 

(v ) , and D 

(v ) ∈ R 

N×N is

a diagonal matrix whose value d (v ) 
ii 

= 

∑ N 
j=1 w 

(v ) 
i j 

. The two operators

Tr ( · ) and ‖ · ‖ F calculate the trace and the Frobenius norm of the

input matrix, respectively. 

As can be seen from Eq. (5) , there are two variables to opti-

mize, i.e., the indicator function Y and the graph weight α. Hence,

we decompose it into two sub-problems, then adopt an alternative

way to solve the optimization problem iteratively. 

3.1.1. Fix α, update Y 

To get the optimal solution of this sub-problem, we compute

the partial derivative of J with respect to Y as ⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

∂J 

∂Y 
= 2 

M ∑ 

v =1 

α(v ) γ L (v ) Y + 2 μ(Y − I) (6) 

∂ 2 J 

∂Y Y T 
= 2 

M ∑ 

v =1 

α(v ) γ (L (v ) � I) + 2 μ(I � I) , (7) 

where � denotes the Kronecker product. 

Since graph Laplacian matrix is known to be positive semi-

definite, we can easily derive that 
∑ M 

v =1 α
(v ) γ (L (v ) � I) is also pos-

itive semi-definite, considering that α( v ) > 0. Hence, the spectral

radius of the Hessian matrix in Eq. (7) is lower-bounded by 2 μ,

which suggests that it is positive definite as long as μ> 0. Conse-

quently, the object function is convex with respect to the variable

Y . 

Therefore, by setting the first derivative in Eq. (6) to zero, the

closed-form solution of Y can be derived as 

 = μ

( 

M ∑ 

v =1 

α(v ) γ L (v ) + μI 

) −1 

. (8)

Note that 
∑ M 

v =1 α
(v ) γ L (v ) + μI is invertible as it is a positive defi-

nite matrix. 

3.1.2. Fix Y , update α
In order to minimize Eq. (4) with respect to the graph weight

α, we utilize Lagrange Multiplier method. Taking the constraint∑ M 

v =1 α
(v ) = 1 into consideration, the Lagrange function of J is 

L (J , λ) = 

M ∑ 

v =1 

α(v ) γ T r 
(
Y T L (v ) Y 

)
+ μ‖ Y − I‖ 

2 
F − λ

( 

M ∑ 

v =1 

α(v ) − 1 

) 

. 

(9)

It can be derived that the partial derivatives with respect to α( v ) 

and λ are 
 

 

 

 

 

 

 

 

 

∂L (J , λ) 

∂α(v ) = γα(v ) (γ −1) 
T r 

(
Y T L (v ) Y 

)
− λ, (10) 

∂ 2 L (J ,λ) 

∂ α(v ) 2 
= γ (γ − 1) α(v ) (γ −2) 

T r 
(
Y T L (v ) Y 

)
, (11) 

∂L (J , λ) 

∂λ
= −∑ M 

v =1 α
(v ) + 1 . (12) 

ote that in this sub-problem, ‖ Y − I‖ 2 
F 

is a constant, which can be

mitted directly. According to the definition in Eq. (3) , Tr ( Y T L ( v ) Y )

s larger than 0. As γ > 1, we can find that the second derivative

ith respect to α( v ) in Eq. (11) is also larger than 0, which means

hat the object function is also convex with respect to α( v ) . 

Therefore, by setting the two derivatives in Eqs. (10) and (12)

o zero simultaneously, the Lagrange multiplier λ is eliminated and

he optimal solution of α( v ) is obtained finally as 

(v ) = 

(
T r 

(
Y T L (v ) Y 

)) 1 
1 −γ

∑ M 

v ′ =1 

(
T r 

(
Y T L (v ′ ) Y 

)) 1 
1 −γ

. (13)

For clarification, we summarize the whole procedure of opti-

ization in Algorithm 2 . After obtaining the indicator Y i for the

Algorithm 2: The pseudocode of smooth neighborhood. 

Input: 

W 

(v ) ∈ R 

N×N , 1 ≤ v ≤ M: the affinity matrices; 

Two hyperparameters: γ and μ. 

Output: 

Y ∈ R 

N×N : the probability distribution of neighbors. 

begin 

Initialize α(v ) = 

1 
M 

; 

repeat 
Update Y using Eq. (8); 

Update the weight α using Eq (13) 

until convergence ; 

return Y 
end 

iven node x i , one can take the nodes with the top- K largest non-

ero confidence scores to constitute k-smooth neighbor (kSN) by

nalogy of the standard kNN. Other variants, such as ε-smooth

eighbor, reciprocal kSN, can be also defined in a similar manner. 

.2. Remarks 

In this section, we give several supplementary remarks on the

roposed smooth neighborhood. 

.2.1. Convergence 

The convergence of the above optimization is guaranteed. Let

 

( t ) and α( t ) denote the value of Y and α in the t th iteration, re-

pectively. Since we find the corresponding optimal solution for

ach sub-problem, the following inequality holds 

 

(
Y (t) , α(t) 

)
≥ J 

(
Y (t+1) , α(t) 

)
≥ J 

(
(Y (t+1) , α(t+1) 

)
. (14)

s a consequence, by solving two sub-problems alternatively, the

bjective value J keeps decreasing monotonically as t increases.

eanwhile, as J is lower bounded by zero, the convergence of the

roposed algorithm can be verified. 

.2.2. Affinity initialization 

To construct the affinity graph, we need to specify the similarity

atrix W . The most common way is to use Gaussian Kernel as 

 i j = exp 

(
−‖ x i − x j ‖ 

2 
2 

σ 2 
i j 

)
, (15)
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here σ ij is the bandwidth parameter that controls the speed of

imilarity decay. In retrieval task, it is crucial to select a good σ ij 

or better performances. Using a proper σ ij is expected to pull

ntra-class images together and push extra-class images apart. Nu-

erous works have focused on this issue, and most previous affin-

ty learning algorithms [9,25,27] use an adaptive Gaussian ker-

el. For example, it is defined in [21] as σi j = σi σ j , where σi =
 x i − x K(i ) ‖ 2 and K ( i ) is the index of the K th nearest neighbor of

 i . 

Those adaptive kernels usually require additional parameters to

x empirically, making the entire framework sophisticated. In our

pproach, we set σi j = σ, a constant for all pairs of images fol-

owing the recent survey paper [19] on affinity learning. It is more

elpful to figure out which part really works using a constant for

ffinity initialization. 

.2.3. Hyperparameters 

There are two hyperparameters involved in the proposed algo-

ithm. 

γ controls the weight distribution of affinity graphs. When

→ 1, only the smoothest affinity graph is counted. When γ → ∞ ,

qual weights are achieved consequently. The determination of

depends on the degree of complementary nature among these

ffinity graphs. Richer complementarity prefers a larger γ . 

In the naive solution, where M affinity graphs are weighted

ombined, the search space to determine the optimal value of

eights grows exponentially with respect to M . It is trivial to de-

ermine the weights in such an exhausted way. When M ≥ 2, the

ime complexity becomes unacceptable. By contrast, we only use

ne parameter γ to model the graph weights, which significantly

educes the number of parameters in the proposed algorithm. 

The other parameter μ actually reflects the degree of influence

astened by the node x i itself. For example, if μ→ ∞ (imitates the

xtremely large influence), the indicator Y i degenerates into iden-

ity matrix I i . It reveals that only x i itself is selected as its neighbor

nally and all the other nodes are discarded. 

.2.4. Complexity analysis 

Since the proposed SN operates on the affinity graph, it gen-

rally requires O ( N 

2 ) to construct the affinity graph as the rela-

ionship between each two data points will be estimated. Then,

s shown in Fig. 1 , SN needs to analyze the relationship between

hree data points. Hence, its time complexity is O ( N 

3 ). From a per-

pective of mathematical optimization, Eq. (8) shows that SN needs

o inverse a matrix of size N × N . As is known, it usually needs

 ( N 

3 ) to compute the matrix inversion. In summary, the overall

ime complexity of SN is bounded by O ( N 

3 ). It should be men-

ioned that it can be potentially accelerated using certain linear

lgebra techniques like the Coppersmith–Winograd algorithm. 

Among the compared methods, k-Nearest Neighbor (kNN) is

he most efficient one. Since it only needs the pairwise simi-

arities between each two points, its time complexity is merely

 ( N 

2 ). As Eq. (2) suggests, the optimization of Dominant Neighbors

DN) [12] requires O ( N 

3 ) to determine the neighborhood struc-

ures for all the data points in a certain database. Meanwhile,

lgorithm 1 shows that the time complexity of Consensus of kNN

CN) [24] is also O ( N 

3 ) due to the usage of three iterations on the

ntire database. 

The comparison of running time will be given in the experi-

ents. 

. Experiments 

In this section, we will testify the validity of Smooth Neigh-

orhood (SN) against other related algorithms, including k-Nearest

eighbor (kNN), Dominant Neighbors (DN) [12] and Consensus of
NN (CN) [24] on several visual retrieval tasks. In particular, we

eed the neighborhood structure learned by SN into a represen-

ative context-sensitive similarity called Sparse Contextual Activa-

ion (SCA) [15] . The experimental results suggest that SN can yield

tate-of-the-art performances with shape retrieval, image retrieval

nd 3D model retrieval. 

.1. Shape retrieval 

Shape retrieval and matching [34–36] has been a fundamental

et hot topic for a long time. Following [12,19,24] , the effectiveness

f smooth neighborhood is first evaluated with shape retrieval on

he MPEG-7 dataset [37] . It consists of 1400 silhouette images di-

ided into 70 categories, where each category has 20 shapes. Each

hape serves as the query data in turn, and the number of cor-

ect returned shapes in the top-40 is counted. The retrieval per-

ormance is measured by the bull’s eye score, i.e., the ratio of

he number of correct hits to the largest possible hits (20 × 1400).

herefore, bull’s eye score ranges from 0 to 100% and a larger score

ndicates a better retrieval performance. 

On this dataset, we implement four different shape similarity

easures that are extensively used to learn the shape manifold

n related literature, including Inner Distance Shape Context (IDSC)

38] , Shape Context (SC) [39] , Aspect Shape Context (ASC) [40] and

rticulation-invariant Representation (AIR) [41] . The baseline per-

ormances of the four similarities are 85.40, 86.79, 88.39 and 93.54,

espectively. 

.1.1. Qualitative evaluation 

Inspired by context-based re-ranking algorithms that lever-

ge neighborhood set comparison directly for re-ranking (see

15,17,23] ), we first adopt a simple and basic pipeline for the per-

ormance evaluation. Let N (x q ) and N (x p ) denote the neighbor-

ood set of the query x q and the database image x p , respectively,

btained by a certain neighborhood analysis algorithm. A more

aithful context-sensitive similarity can be defined via using the

accard similarity between two sets as 

(x q , x p ) = 

|N (x q ) ∩ N (x p ) | 
|N ( x q ) ∪ N (x p ) | , (16)

here | · | measures the cardinality of the input set. The motivation

f Eq. (16) is straightforward, i.e., if two images are similar, they

end to have extensive common neighbors. 

In Fig. 2 , we plot the retrieval performances of Eq. (16) em-

edded with different neighborhood analysis algorithms as a func-

ion of neighborhood size. As analyzed above, almost all the pre-

ious works cannot deal with more than one affinity graph. In or-

er to provide a fair comparison in this situation, the results of

NN, DN and CN are implemented using a linear combination of

hose graphs with equal weights. The parameter setup of the pro-

osed SN is as follows. The weight controller γ = 3 , the regularizer

= 0 . 08 . For affinity initialization, we set σ = 0 . 2 . 

A first glance at Fig. 2 shows that the neighborhood structure

enerated by the proposed SN is much more robust than the other

ompared algorithms. Especially at larger K , the advantage of SN

s more dramatic. It clearly demonstrates the benefit of exploring

he local consistency in the proposed method. Since there are 20

hapes per category on the MPEG-7 dataset, outliers are likely to

e included when the neighborhood size is larger than 20. Never-

heless, the objective function in Eq. (4) regularizes that even if a

elatively larger K is specified, the behavior of selecting neighbors

f nearby points is forced to be as similar as possible. Thus, we can

nd that the performance of SN is quite stable at variable neigh-

orhood sizes. Such a nice property makes SN especially suitable

o context-based re-ranking algorithms, where contextual informa-

ion is described by neighborhood structures. 
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Fig. 2. The comparison using Eq. (16) on the MPEG-7 dataset. The baseline similarities used are IDSC (a), SC (b), ASC (c) and IDSC+SC+ASC (d), respectively. 
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In [24] , CN is also demonstrated to provide stable performances

at a relatively larger neighborhood size. However, it is simply in-

spired by an experimental observation, but lacks theoretical analy-

sis. In comparison, the proposed SN provides an explicit objective

function based on graph Laplacian to preserve the local manifold

structure, so that the neighbor selection can be as smooth as pos-

sible along the underlying manifold. It can be also found that DN

yields poor performances for two reasons. First, it starts to con-

verge into false neighbors at larger K as claimed in [24] . Second,

we do not give a good enough initialization for similarities using

adaptive Gaussian kernels as previous work [12] do. 

When fusing multiple affinity graphs, SN outperforms the other

algorithms by a larger margin. The reason behind the superiority of

SN is the weight learning mechanism imposed on multiple affin-

ity graphs. On one hand, this learning paradigm can give promi-

nence to the smoothest affinity graph and suppress the negative

impacts from non-smooth affinity graphs. On the other hand, it can

well exploit the complementary nature and consensus information

among them, which is controlled by the weight controller γ . As

introduced above, rich complementary nature prefers larger γ . 

4.1.2. Improving context-sensitive similarity 

There are many candidate context-sensitive similarities to dis-

tinguish the discriminative power of neighborhood analysis algo-

rithms (see the framework of diffusion process in [19] for a com-

prehensive summary). However, the convergence of most these al-

gorithms is not guaranteed, so the iteration has to be stopped at a

“right” moment. Whereas, it is generally intractable in retrieval to

set the stop condition without annotated training data. Moreover,

our experimental results show that some methods heavily rely on

a proper initialization for the pairwise similarities using adaptive

Gaussian kernel as introduced in Section 3.2 , i.e., σ ij should be

different for each pair of data points. If σ ij is set to a constant

as in this paper, these iterative algorithms, including Locally Con-
trained Diffusion Process (LCDP) [25] , are prone to producing in-

orrect dense clusters. Such an experimental observation (refer to

able 2 ) usually occurs when the performances of the input base-

ines are relatively low (e.g., IDSC). Finally, diffusion process usually

onsists of three parts: affinity initialization, the definition of tran-

ition matrix and the definition of the update scheme. Neverthe-

ess, the neighborhood analysis techniques only pay attention to

he definition of transition matrix, since it records the neighbor-

ood structures to constrain the diffusion process locally. In this

ense, these variants of diffusion process are not proper to assess

he neighborhood analysis techniques. 

Instead of using LCDP, we turn to a recent re-ranking algorithm

alled Sparse Contextual Activation (SCA) [15] , which is simple to

mplement and insensitive to parameter tuning. SCA is particularly

uitable to evaluate the neighborhood analysis techniques since it

irectly focuses on the usage of the neighborhood structure by

omparing two neighborhood sets in fuzzy set theory. It has two

arameters to be fixed manually, i.e., the parameters k 1 and k 2 de-

ermining the first-order and the second-order neighborhood sizes,

espectively. In our case, the two neighborhood sets can be ob-

ained using kNN, DN, CN and the proposed SN. 

Table 1 presents the performance comparison, and the results

f kNN, DN and CN are reported at its optimal parameter setup

not necessarily the same parameter setup). First, we could ob-

erve that in line with previous analysis, the proposed SN achieves

he best performances among the compared algorithms no mat-

er what baseline similarities are used. Second, when the base-

ine similarity varies, the second best performances are achieved

y different algorithms, and no algorithms generalize well in di-

erse data structures parameterized by different baseline similar-

ties. For example, excluding SN, the simplest kNN rule outper-

orms others when AIR serves as the baseline similarity. Neverthe-

ess, it can be clearly drawn that SN possesses consistent perfor-

ance gain over the second best. Third, the performance gain of
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Table 1 

The performance comparison in bull’s eye score (%) of neighborhood analysis algo- 

rithms on the MPEG-7 dataset. The best and the second best results are marked 

with red and green color, respectively. The last column presents the performance 

gain of SN over the best-performing algorithms. 
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N is more dramatic when lower baselines are used. For instance,

he performance gain over the second best is only 0.03 with the

elatively high baseline AIR. When the relatively low baseline like

C is used, the performance gain increases to 1.28. When multiple

imilarity measures (e.g., IDSC + SC or IDSC + SC + ASC) are in-

egrated, the superiorly of SN is more distinctive. In the following

xperiments, we will combine SCA with SN to provide the retrieval

erformances of our method, if not specified otherwise. 

.1.3. Comparison with state-of-the-art 

In Table 2 , we give a thorough comparison with the state-of-

he-art algorithms. The results in the table are carefully classified

ccording to the type of input baseline similarity. Since Generic

iffusion Process (GDP) [19] only reports its result with AIR as the

nput similarity, its performances with IDSC, SC and ASC are im-

lemented by the authors using the public available codes, 1 thus

arked with � on the upper right corner. 

IDSC is the most frequently used baseline shape similarity.

ombining smooth neighborhood and SCA, we report a new level

erformance using IDSC as the baseline similarity, which is 93.52
1 Available at http://vh.icg.tugraz.at/index.php?content=topics/diffusion.php 

s  

o

Table 2 

The bull’s eye scores (%) of different methods o

Descriptors Methods 

IDSC Contextual Dissimilarity Meas

IDSC Generic Diffusion Process (GD

IDSC Index-Based Re-Ranking [14] 

IDSC Graph Transduction (GT) [9] 

IDSC Locally Constrained Diffusion 

IDSC RL-Sim Re-Ranking [2] 

IDSC Shortest Path Propagation (SS

IDSC Mutual kNN Graph (mkNN) [2

IDSC Sparse Contextual Activation (

IDSC Smooth Neighborhood (Ours

SC Generic Diffusion Process (GD

SC Graph Transduction (GT) [9] 

SC Sparse Contextual Activation (

SC Smooth Neighborhood (Ours

ASC Generic Diffusion Process (GD

ASC Index-Based Re-Ranking [14] 

ASC RL-Sim Re-Ranking [2] 

ASC Locally Constrained DP (LCDP)

ASC Tensor Product Graph (TPG) [1

ASC Smooth Neighborhood (Ours

IDSC + SC Co-Transduction [11] 

IDSC + SC Locally Constrained Mixed Dif

IDSC + SC Sparse Contextual Activation (

IDSC + SC Smooth Neighborhood (Ours

AIR Tensor Product Graph (TPG) [1

AIR Generic Diffusion Process (GD

AIR Connected Components [42] 

AIR Smooth Neighborhood (Ours
n bull’s eye score. Of course, it is not the best performance on

his dataset, since some context-based re-ranking algorithms take

he higher baseline AIR as the input similarity. For instance, Tensor

roduct Graph (TPG) [12] reports 99.99 bull’s eye score by com-

ining adaptive Gaussian kernel, dominant neighbor and diffusion

rocess. By contrast, we achieve the perfect score 100 by simply

sing smooth neighborhood and SCA. The performance gain is es-

ecially valuable when considering the fact that we do not use a

ore accurate similarity initialization using adaptive Gaussian ker-

el as TPG. Meanwhile, generic diffusion process [19] also reports

00 bull’s eye score by enumerating 72 variants of diffusion pro-

ess (4 different affinity initializations, 6 different transition ma-

rices and 3 different update schemes). One may note that the re-

rieval performances of generic diffusion process are inferior with

DSC, SC or ASC. It verifies our previous claim that a proper affinity

nitialization using adaptive Gaussian kernel is crucial for diffusion

rocess when lower baseline similarities are used. A recent algo-

ithm [42] also correctly reveal this intrinsic data structure by ex-

loiting the Reciprocal kNN Graph and its Connected Components. 

Previous similarity fusion algorithms usually only consider in-

egrating two similarity measures, e.g., SC and IDSC. This is due to

he fact that most of them [11] are based on the co-training frame-

ork that is only suitable to deal with two similarity measures.

ur method potentially provides an alternative way of similarity

usion at the neighbor selection level. What is more important is

hat it is not limited to two similarity measures. Even though us-

ng more similarity measures, we can still obtain only one shared

eighborhood structure, as well as the weights of different affinity

raphs. It can be expected that when more complementary sim-

larities are fused, a more robust neighborhood structure can be

earned thus leading to higher retrieval performances. To support

ur speculation, we also report the performances of SN with a

ombination of similarities that is not used by previous works. For

xample, by combining IDSC, SC and ASC, SN can yield bull’s eye

core 99.81 . To our best knowledge now, it is the best performance
n the MPEG-7 dataset while AIR is not used. 

n the MPEG-7 dataset. 

Bull’s eye score 

ure (CDM) [8] 88.30 

P) � [19] 90.96 

91.56 

91.61 

Process [25] 92.36 

92.62 

P) [10] 93.35 

1] 93.40 

SCA) [15] 93.44 

) 93.52 

P) � [19] 92.81 

92.91 

SCA) [15] 95.21 

) 95.25 

P) � [19] 93.95 

94.09 

95.75 

 [25] 95.96 

2] 96.47 

) 95.98 

97.72 

fusion (LCMD) [27] 98.84 

SCA) [15] 99.01 

) 99.25 

2] 99.99 

P) [19] 10 0.0 0 

10 0.0 0 

) 10 0.0 0 

http://vh.icg.tugraz.at/index.php?content=topics/diffusion.php
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Table 3 

The N-S scores of different methods on the Ukbench dataset. Note that Query Adaptive 

Fusion uses 5 input similarities, and the last result of our method is produced by using all 

the 4 similarities implemented in this paper. 

Descriptors Methods N-S score 

BoW (3.52) kNN Re-ranking [47] 3.56 

BoW (3.22) Tensor Product Graph [12] 3.61 

BoW (3.26) Co-transduction [11] 3.66 

BoW (3.50) RNN Re-ranking [22] 3.67 

BoW (3.54) Graph Fusion [17] 3.67 

BoW (3.33) Contextual Dissimilarity Measure [8] 3.68 

BoW (3.56) Sparse Contextual Activation [15] 3.69 

BoW (3.57) Smooth Neighborhood (Ours) 3.75 

CNN (3.44) Smooth Neighborhood (Ours) 3.66 

CNN (3.65) Smooth Neighborhood (Ours) 3.81 

HSV (3.17) Graph Fusion [17] 3.28 

HSV (3.40) Sparse Contextual Activation [15] 3.56 

HSV (3.40) Smooth Neighborhood (Ours) 3.56 

BoW (3.20,3.17,2.81) Locally Constrained Mixed Diffusion [27] 3.70 

BoW (3.54), HSV (3.17) Graph Fusion [17] 3.77 

BoW (3.54), HSV (3.17) Graph Fusion [18] 3.83 

BoW (3.58), CNN (3.40), etc. Query Adaptive Fusion [3] 3.84 

BoW (3.56), HSV (3.40) Sparse Contextual Activation [15] 3.86 

BoW (3.13), CNN (3.87) ONE [48] 3.89 

BoW (3.54), CNN (3.31) Connected Components [42] 3.89 

BoW (3.57), CNN (3.44), etc. Smooth Neighborhood (Ours) 3.98 
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4.2. Image retrieval 

The proposed approach is then evaluated on the Ukbench

dataset [43] , commonly used as a benchmark in natural image re-

trieval. It is comprised of 2550 objects and each object has 4 dif-

ferent viewpoints or illuminations. All 10,200 images are both in-

dexed as queries and database images. The most widely-used eval-

uation metric is N-S score, which counts the average recall of the

top-4 ranked images. Hence, N-S score ranges from 1 implying only

the query itself is returned, to 4 that is the perfect N-S score on

this dataset. 

In this experiment, we implement 4 kinds of similarity mea-

sures. They are 

1. Bag of Words (BoW): SIFT [44] descriptors are extracted at in-

terest points produced by Hessian-affine detectors, and later

converted to RootSIFT [45] . A codebook with 20 k entries is

learned with K-means on independent data. We follow the

pipeline of Hamming embedding [46] that uses cosine similar-

ity for affinity initialization. The N-S score of BoW representa-

tion is 3.57. 

2. Convolutional Neutral Network (CNN): Two CNN features are

extracted based on the trained AlexNet model. The activations

of 5th convolutional layer and the 7th fully-connected layer are

used. For each image, the activation is first square-rooted then

L 2 normalized. The N-S scores of the two CNN features are 3.44

and 3.65, respectively. 

3. HSV: Following [17] , we extract 10 0 0 dimensional HSV color

histogram (20 × 10 × 5 bins for H, S, V components, respec-

tively). The HSV histogram is first L 1 normalized then square-

rooted. The N-S score of HSV is 3.40. 

The parameter setup of SN is the same as those reported in

Section 4.1 . σ = 0 . 5 is used for affinity initialization. 

Extensive algorithms have reported their performances on the

Ukbench dataset. However, in Table 3 , we only collect two kinds

of results for comparison, i.e., postprocessing algorithms such

as context-sensitive similarities, and the state-of-the-art perfor-

mances ever reported. To improve the readability, the results are

ordered from those using single feature to those using multiple

features. Meanwhile, since the performances of baselines used by

different methods are usually quite different in natural image re-
rieval, we also include N-S scores of those baselines in the paren-

heses. 

Graph Fusion [17] is a representative algorithm that integrates

ultiple affinity graphs by averaging the strength of edges with

qual weights. It reports 3.77 N-S score by fusing local SIFT feature

nd holistic HSV color histogram, and later reports 3.83 in [18] by

teratively constructing the graph. In a sense, the proposed SN can

e also considered as a kind of graph fusion. However, the differ-

nce is that we do not consider simply averaging the edge weights.

nstead, SN tries to find a robust neighborhood structure shared by

ifferent affinity graphs, so that the consensus information among

hem can be largely preserved. In [3] , N-S score 3.84 is achieved

y fusing five kinds of features. Using BoW and HSV as the input

imilarities, SCA [15] reports N-S score 3.86. Fusing BoW and CNN

eature, ONE [48] and Connected Components [42] both achieve N-

 score 3.89, which is the best performance to our knowledge. 

Besides those postprocessing methods, [49] reports NS score

.67 by using query expansion. Sun et al. [50] extracts object-level

eatures rather than traditional local or global features, and reports

.81. Paulin et al. [51] and Babenko and Lempitsky [52] exploit lo-

al convolutional features, and report N-S score 3.76 and 3.65, re-

pectively. In this paper, we achieve the near perfect N-S score 3.98

y fusing all the 4 similarities, including BoW, two CNN features

nd HSV. It outperforms the previous state-of-the-art remarkably. 

.3. 3D model retrieval 

3D model [53,54] is a more complicated data pattern, which

s of great academic value. In this section, we test the per-

ormance of SN on two widely-accepted 3D model retrieval

atasets, i.e., Princeton Shape Benchmark (PSB) [55] and Water-

ight Models track of SHape REtrieval Contest 2007 dataset (WM-

HREC07) [56] . 

PSB dataset is a classic benchmark for generic 3D model re-

rieval, which is comprised of 1804 3D polygonal models. The en-

ire dataset is divided into training set and testing set with 907

odels each. Following the common settings, only the testing set

ith 92 categories is used to evaluate the performance of unsuper-

ised retrieval. SHape REtrieval Contest (SHREC), held each year,

s an authoritative competition for evaluating the effectiveness of

D object retrieval algorithms. In this paper, we use WM-SHREC07,
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Table 4 

The baseline performances (%) on the PSB and the WM-SHREC07 datasets. 

Methods PSB WM-SHREC07 

NN FT ST DCG NN FT ST DCG 

VLAD [57] 80.4 57.5 71.5 79.9 95.7 70.8 80.9 90.3 

NSC [58] 79.4 57.2 69.8 78.5 96.5 78.3 90.5 93.1 
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hich contains 400 watertight mesh models that are evenly dis-

ributed into 20 classes. 

To quantify the performance, we employ the following evalua-

ion metrics: 

• Nearest Neighbor (NN): the percentage of the closest matches

that belongs to the same class as the query. 
• First Tier (FT): the recall for the top (C − 1) matches in the

ranked list, where C is the number of shapes in the category

that query belongs to. 
• Second Tier (ST): the recall for the top 2(C − 1) matches in the

ranked list, where C is the number of shapes in the category

that query belongs to. 
• Discounted Cumulative Gain (DCG): a statistic that attaches

more importance to the correct results near the front of the

ranked list than the correct results at the end of the ranked

list, under the assumption that a user is more likely to consider

the retrieved candidates in the front of the list. 

All the evaluation metrics range from 0 to 100%, and higher val-

es indicate better performances. One can refer to [55] for their

ormal definitions. 

In this experiment, the same two baseline similarities used by

CA [15] are tested, as 

1. VLAD: SIFT [44] descriptors are extracted at the 64 depth pro-

jections of the 3D models. Then, Vector of Locally Aggregated

Descriptors (VLAD) [57] is used to encode those descriptors

with a codebook of 2048 entries. The generated features are L 2 
normalized, and the pairwise shape similarity is computed in

the Euclidean metric. 

2. NSC [58] : Neural shape codes (NSC) trains a Convolutional Neu-

ral Network on the projections of the 3D model. Then, it ex-

tracts the activations of the internal layers as the feature repre-

sentations of the projections. At last, Hausdorff distance is em-

ployed for shape matching. 

The performances of those two baselines are given in Table 4 .

he parameter setup of SN is the same as those reported in

ection 4.2 . 

The performance comparison with other representative meth-

ds is given in Table 5 . kNN is used by SCA in [15] to define the

ontextual information of data points, while in this paper we re-

lace it with the proposed SN. As the input baseline similarities

re exactly the same, one can clearly observe the superiority of SN

ver kNN. As presented in Table 5 , SCA originally achieves ST 81.0

n the PSB dataset and 95.6 on the WM-SHREC07 dataset. After SN

s used, SCA improves this score to 82.5 and 97.2, respectively. It

emonstrates again that with a more faithful context provided by

N, SCA can better reveal the intrinsic relationship between data

oints. Moreover, SN also outperforms other representative meth-

ds on all the evaluation metrics remarkably. Also, it can be ex-

ected that if more robust descriptors [54,68,69] are used, the per-

ormance will be better. 

.4. Discussion 

.4.1. Execution time 

Table 6 compares the execution time of the four neighbor-

ood analysis algorithms with different baseline similarities on the
PEG-7 dataset. To make the comparison straightforward, we only

ount the time cost of neighbor selection, while that of other pro-

edures like feature extraction and indexing are excluded. All the

xperiments are done on a personal computer with an Intel(R)

ore(TM) i5 CPU (3.40 GHz) and 16 GB memory. 

As analyzed in Section 3.2.4 , kNN is one order of magnitude

aster than the others. Hence, it can be easily found that kNN only

eeds around 0.2 s in total to determine the neighborhood struc-

ure. In comparison, the execution time of DN, CN and the pro-

osed SN is much longer. As DN has to traverse the entire database

or 3 times, it is the most inefficient one. Owing to the well-

efined matrix multiplication and inverse in common computing

latforms, the time cost of CN and SN is relatively lower. In par-

icular for the proposed SN, the time cost is much heavier when

ultiple similarities are fused, as SN needs to perform alterna-

ive optimization in this case. Note that the cost of SN can be fur-

her reduced if more advanced optimization techniques are used

e.g., parallel computing). Nevertheless, it is still an open issue to

esign more efficient neighbor selection algorithms. 

.4.2. Parameter sensitivity 

In the experiments above, the values of the hyperparameters γ
nd μ are fixed empirically. In Fig. 3 , we depict their influences

n the retrieval accuracy. The discussion is done on the MPEG-7

ataset with SC and IDSC as the baseline similarities. As can be

ound, the proposed SN is insensitive to the change of the hyper-

arameters. It is also observed that if carefully tuning the param-

ters, SN can achieve a better performance. For example, Fig. 3 (a)

hows that the best bull’s eye score is 99.52, which is higher than

9.25 reported in Table 2 . 

. Conclusions 

In this paper, we propose a neighbor selection algorithm called

mooth Neighborhood (SN). Compared with related algorithms, the

wo key advantages of SN are the theoretical guarantee of the un-

erlying manifold structure and the capacity of dealing with mul-

iple affinity graphs. Embedded with context-sensitive similarities,

N is evaluated on retrieval tasks and achieves much better per-

ormances than other related algorithms, including kNN, dominant

eighborhood and consensus of kNN. In particular, despite the per-

ect bull’s eye score with shape retrieval on the MPEG-7 dataset,

N also achieves the near perfect N-S score 3.98 with natural im-

ge retrieval on the Ukbench dataset, and the state-of-the-art per-

ormances with 3D model retrieval on the PSB and WM-SHREC07

atasets. 

Since the proposed method focuses on neighborhood analysis, it

an be potentially plunged into other retrieval systems (e.g., RNN

e-ranking [22] , kNN Re-ranking [47] ) and other computer vision

asks (e.g., graph matching [70] , image categorization, object detec-

ion, video search [71] ), where a more robust neighborhood struc-

ure is required. Moreover, it should be addressed that the weight

earning paradigm in our method is exerted into the entire affinity

raphs. However, it is known that query specific weight is a more

roper choice in retrieval task. We would like to exploit these is-

ues in the future. 
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Table 5 

The performance comparison (%) with other state-of-the-art algorithms on the PSB and the 

WM-SHREC07 datasets. 

Methods PSB WM-SHREC07 

NN FT ST DCG NN FT ST DCG 

LFD [59] 65.7 38.0 48.7 64.3 92.3 52.6 66.2 −
Tabia et al. [60] − − − − 85.3 52.7 63.9 71.9 

DESIRE [61] 66.5 40.3 51.2 66.3 91.7 53.5 67.3 −
tBD [62] 72.3 − − 66.7 − − − −
Covariance [63] − − − − 93.0 62.3 73.7 86.4 

Spatially-covariance [64] − − − − 92.5 65.4 75.6 86.2 

2D/3D Hybrid [65] 74.2 47.3 60.6 − 95.5 64.2 77.3 −
PANORAMA [66] 75.2 53.1 65.9 − 95.7 74.3 83.9 −
3DVFF [67] − − − 84.1 − − − −
SCA [15] 83.7 70.0 81.0 85.0 99.0 90.0 95.6 97.2 

Smooth Neighborhood 81.0 70.8 82.5 85.2 99.3 92.4 97.2 97.8 
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Fig. 3. The influence of γ (a) and μ (b) on the retrieval accuracy. 

Table 6 

The comparison in execution time (s) of neighborhood analysis algorithms on the 

MPEG-7 dataset. 

Baselines kNN DN [12] CN [24] SN (Ours) 

IDSC 0.20 1418 2.81 4.14 

SC + IDSC 0.21 1419 3.21 29.40 
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