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Abstract

Reading text in the wild is a very challenging task due to

the diversity of text instances and the complexity of natural

scenes. Recently, the community has paid increasing atten-

tion to the problem of recognizing text instances of irregular

shapes. One intuitive and effective solution to this problem

is to rectify irregular text to a canonical form before recog-

nition. However, these methods might struggle when deal-

ing with highly curved or distorted text instances. To tackle

this issue, we propose a Symmetry-constrained Rectification

Network (ScRN) in this paper, based on the local attributes

of text instances, such as center line, scale, and orientation.

Such constraints with an accurate description of text shape

enable ScRN to generate better rectification results than ex-

isting methods thus leading to higher recognition accuracy.

Our method achieves state-of-the-art performance on text

of both regular and irregular shapes. Specifically, the sys-

tem outperforms existing algorithms by a large margin on

datasets that contain quite a proportion of irregular text in-

stances, e.g., ICDAR 2015, SVT-Perspective and CUTE80.

1. Introduction

Scene text reading [60, 32, 59, 54, 53, 36, 35] is an im-

portant, active research area in computer vision, which can

be applied to a wide range of real-world applications, such

as self-driving cars, assistant position systems, and guide

board recognition [43]. Scene text recognition, which aims

at converting text regions in the images to machine-readable

symbols, is a critical step in scene text reading systems. It

remains challenging due to complex backgrounds, irregular

shapes, varying fonts, non-uniform illuminations, etc.
Text instances in real-world scenarios have diverse

shapes, e.g., in horizontal, oriented, or curved forms. There

have been a lot of works that focus on dealing with irreg-

ular text instances. AON [8] applies sequence recognition
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TPS 
transformationSTN 

(a)

TPS 
transformationScRN

(b)

Figure 1: Comparison between ASTER [46] and ScRN

(proposed in this paper), shown in (a) and (b) respectively.

in four different orientations, which enables the recognition

model to handle oriented text instances. RARE [45] and

ASTER [46] employ a rectification module before recog-

nition. The rectification modules can improve text recog-

nition accuracy by rectifying text in irregular shapes into

regular forms. These rectification modules are based on

spatial transform network (STN) [21], which predicts the

control points of the text outlines in a weakly supervised

way, as shown in Fig. 1a. They can deal with the text of

various shapes only with word-level supervision. Ideally,

the control points should evenly spread along the upper and

lower edges of the text region, and the paired upper and

lower points should be symmetrical about the center line of

text. However, these STN-based methods predict the con-

trol points separately and neglect the priors. Without any

constraints for such priors, the rectification effect in highly

curved or distorted occasions might be unsatisfactory.

To further improve the performance of irregular text rec-

tification, we propose a Symmetry-constrained Rectifica-

tion Network (ScRN) that uses the center line of each text

instance and adds symmetrical constraints via some geo-

metrical attributes, including the orientations of the text

center line, the orientations and the scales of the characters.

Specifically, each text center line is more flexible to describe

the pose of either straight or curved text. Its associated geo-

metrical attributes can reliably estimate the orientation and

the boundary of text lines in vertical direction. Further-

more, the generation process of control points ensures the
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Figure 2: Pipeline of the proposed method.

symmetrical constraints in their spatial distribution. ScRN

is a simple segmentation network which only consists of

two convolutional layers. Therefore, it just incurs negligi-

ble computation and storage overhead when combined with

a text recognizer. Compared with the previous STN-based

rectification methods, ScRN has superiorities in both ro-

bustness and interpretability, profiting from its symmetric

constraints. In this way, ScRN can further improve the text

recognition accuracy by enhancing the performance of rec-

tification on the irregular text, as illustrated in Fig. 1b.

The main contribution of this paper lies in the proposed

rectification network for scene text recognition, whose ad-

vantages are three-fold. 1) The novel rectification network

is more precise and robust, due to the elaborate description

of text shape and the explicit symmetric constraints. 2) It

is a simple and lightweight segmentation network, and thus

the extra computation complexity is negligible when com-

bined with existing text recognizers. 3) With the rectifi-

cation network, we achieve state-of-the-art performance on

the standard scene text recognition benchmarks.

2. Related Work

2.1. Text Recognition

Existing works on scene text recognition can be roughly

divided into traditional and deep learning based methods.

A popular pipeline of traditional methods [10, 50, 49, 51,

38, 37, 39, 55, 4] is in the bottom-up architecture. They first

localize every character with a character proposal extractor.

Then, a character classifier is used to filter the proposals.

Finally, the remained characters are grouped into words.

Deep learning based methods [20, 17, 25, 48, 45, 44, 7,

29, 3, 8, 46, 57] have been dominating this area in recent

years. Jaderberg et al. [20] propose to take scene text recog-

nition as a word classification problem by using a CNN

classifier. However, it is limited to the pre-defined vocab-

ulary. To overcome this limitation, various sequence-to-

sequence models [44, 45, 7, 8, 46] are applied for scene

text recognition, which do not rely on pre-defined vocab-

ularies. These methods can be roughly divided into two

subcategories by different sequence decoders. One sub-

category is based on Connectionist Temporal Classification

(CTC) [13, 44, 17] while the other is based on attention de-

coders [8, 46, 7]. More related papers are referred to [32].

2.2. Irregular Text Recognition

The irregular text includes, but is not limited to oriented

or perspectively distorted text, curved text, etc. Recently,

irregular text recognition [40, 52, 45, 8, 46, 30] becomes

popular. Cheng et al. [8] encode the input image to four

feature sequences of four directions to handle text of ori-

ented shapes. Yang et al. [52] add character-level supervi-

sion to guide the attention learning on the 2D feature maps.

Liu et al. [30] introduce “clean” images which contain no

geometric deformation to supervise the learning process at

both the pixel level and the feature level in a generative way.

With such a generator-discriminator architecture, it can han-

dle text on a curved path but fails in the text with a cluttered

background. Shi et al. [45, 46] propose to add a rectification

module before recognition. With only word-level supervi-

sion, they adopt the spatial transform network (STN) [21] to

rectify the text in a weakly supervised manner. To improve

the rectification results, Li et al. [26] bring extra supervi-

sion to STN and upgrade the model to a semi-supervised

multi-task learning system, by labeling a portion of trans-

formation parameters in the dataset. The control points are

expected evenly spread along the upper and lower edges of

text, and the paired upper and lower points should be sym-

metrical about the center line of text. Nevertheless, these

rectification modules separately predict the control points

and do not explicitly consider the constraints on the control

points, which results in the limitations of their rectification

effect. Our proposed method applies the constraints via ge-

ometrical attributes of text instances to rectify the irregular

text, which gains both robustness and interpretability.

3. Our Method

As illustrated in Fig. 2, the proposed pipeline consists of

three major parts: the shared backbone network, the recti-

fication network and the recognition network. The model

is end-to-end trainable and integrates the text rectification

and recognition within a unified framework. The backbone

is FPN [28] equipped with ResNet-50 [16], which is shared

9148



by the rectification module and the recognition module. Us-

ing the shared feature maps, the rectification module yields

dense pixel-wise predictions of text geometric attributes,

with which the shared feature maps are expected to be rec-

tified as regular ones via Thin-Plate-Spline (TPS) [6] trans-

formation. Finally, the rectified feature maps are translated

into a character sequence by the recognition module, where

a shallow network is employed to convert the map to se-

quential features, followed by an attention decoder. The

rectification module and recognition module are detailed in

Sec. 3.1 and Sec. 3.2, respectively.

3.1. Rectification Module

The definition of the text shape is critical for text rec-

tification because the rectification process can be consid-

ered as a shape transformation. Zhang et al. [58] design

the text proposals according to symmetry while Long et

al. [33] adopt local geometrical attributes, to represent the

text shape for scene text detection. From the above analysis

in Sec. 1, we conclude the symmetrical constraints are nec-

essary for precise text rectification. To add such constraints

into our rectification module, we use text center line with its

associated geometrical attributes, such as character orienta-

tion, text orientation and text scale to describe the shape of

a text instance. In this section, we first introduce a new rep-

resentation for text rectification. Then we describe how to

rectify text images with the given geometric attributes. At

last, we highlight the necessity to introduce the character

orientation for accurate rectification.

3.1.1 Definition

The geometrical attributes of text for rectification are illus-

trated in Fig. 3, including the text center line, the scale s,

the character orientation ϕ and the text orientation θ.

A text instance can be viewed as an ordered charac-

ter sequence A = {A1, ..., Ai, ..., Am}, where m is the

number of characters. Each character Ai has a bound-

ing box Bi, which is annotated with a free-form quadri-

lateral. First, we construct a center point list C =
{chead, c1, ..., ci, ..., cm, ctail}, which consists of the cen-

ter point ci of each Bi as well as the midpoint of B1’s

left edge chead and the midpoint of Bm’s right edge ctail.
Then the text center line (TCL) is constructed by linking

the center points in sequential order. Each center point

is associated with a group of geometrical attributes, i.e.,
geoi = (ci; si;ϕi; θi), where si is the scale, ϕi is the char-

acter orientation and θi is the text orientation. Specifically,

the scale si is half the height of the character. The text orien-

tation θi is defined as the tangential direction of ci → ci+1.

The character orientation ϕi is defined as the direction from

the midpoint of the top edge to the midpoint of the bottom

edge. For the points on the TCL but not in C, the values

text center line

Figure 3: Illustration of the text representation.

of their geometrical attributes are linearly interpolated with

two nearest center points. In this way, the shape of the text

instance is precisely described and can be leveraged for the

subsequent rectification step.

3.1.2 Geometrical Attributes Prediction

The rectification process is shown in Fig. 4. To yield the

geometrical attributes, we employ a lightweight predictor

which only consists of two convolutional layers. The out-

put of this predictor is F = {f1, f2, ..., f6}. f1 represents

the probability of pixels on the TCL. f2 represents the char-

acter scale s at each pixel. f3, f4, f5, and f6 are pixel-wise

predictions for cos θ, sin θ, cosϕ and sinϕ, respectively.

Specifically, cosϕ and sinϕ are normalized to ensure that

their quadratic sum equals to 1, as depicted in Eqn. (1).

cos θ and sin θ are normalized in the same way. After that,

TCL score map, s, cos θ, and sin θ are used to extract the

central point list C, whose length is variable. More details

about this process are referred to [33]. Then, C, s, cosϕ,

and sinϕ are used for rectification.

cosϕ =
f5√

f5
2 + f6

2
, sinϕ =

f6√
f5

2 + f6
2
. (1)

3.1.3 Rectification

Thin-Plate-Spline (TPS) transformation is employed to rec-

tify the shared feature maps M to regular ones Mr. In order

to compute the TPS transformation T, we need to generate

a pair of point sets P = {p1, ..., pi, ..., p2k} and P ′, which

represent the fiducial points in the irregular feature maps

and the predefined anchor points on the Mr, respectively.

The procedure is given in Fig. 4. First, we equidistantly

sample k points from C, named C = {c1, ..., ci, ..., ck}.

For each ci, we take two points at a distance si along the

character orientation, which is expressed in (cosϕi, sinϕi).
The coordinates of the two points are computed via

p2i−1 = ci + (si × cosϕi,−si × sinϕi),

p2i = ci + (−si × cosϕi, si × sinϕi).
(2)

P ′ is evenly placed along the top and bottom borders of the

regular feature maps. Given P and P ′, the transformation

matrix T is calculated. Then, we apply T to every pixel lo-

cations in Mr and obtain a sampling grid on M , with which,

Mr is sampled from M using bilinear interpolation.
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Figure 4: The rectification process. Note that, for all figures in this paper, we use the input image to illustrate these points

and rectified results, but the rectification is actually operated on the shared feature maps.

Theoretically, TPS transformation is able to handle

variable-size fiducial points, and thus C can be directly used

to obtain the fiducial points P . However, to build a mini-

batch for batch-wise training, the length of P should be

predefined and fixed. Therefore, we resample the central

point list C to obtain C with a fixed length.

3.1.4 Character Orientation

When bounding boxes of all characters are rectangular, the

character orientation is perpendicular to the text orientation.

However, in more general cases, the orientation perpendicu-

lar to the text orientation is not the correct character orienta-

tion, which may lead to a failed rectification. As illustrated

in Fig. 5, when the normal direction of the center line is not

the same as the character orientation, the rectification based

on the character orientation ϕ is much better than the other

one. So it is necessary to add the character orientation ϕ
into the text geometric attributes for text rectification.

3.2. Recognition Module

The text recognition module aims to predict a character

sequence from the rectified shared features. Using the hier-

archical structure of the shared backbone, we obtain an en-

riched feature map. We use a sub-network to further encode

the map to vector sequence before being fed into the final

attention decoder. The settings of the recognition module

are detailed in Tab. 1.

To reserve more discriminable features of the characters

in compact text or in narrow shapes, the input feature is

reduced only once along the width axis while keeps col-

lapsing along the height axis until it reduces to 1. Then,

the feature map is converted into a feature sequence by 1-

stride sliced along the width axis. Finally, a Bidirectional

Figure 5: Control points and rectification results using the

character orientation (Left) and normal direction of text ori-

entation (Right).

LSTM [14] is attached to capture the long-range dependen-

cies in both directions, resulting in a higher-level feature

sequence H = {h1, ..., hn}, where n is the length of H.

Next, the common attention-based decoder [2] equipped

with GRU [9] is adopted to translate the feature sequence

H into a symbol sequence y = {y1, ..., yT }, where T is the

number of characters. To generate sequences of variable

lengths, a special end-of-sequence symbol (EOS) is inserted

at the end of the target sequence. The decoder iteratively

predicts a symbol yt at step t until EOS is emitted.

Given the input image I , the recognition loss can be for-

mulated as

Lrecog = −
1

T

T∑

t=1

log p(yt|I). (3)

3.3. Training and Inference

3.3.1 Training Objective

We add explicit supervision into both the rectification mod-

ule and the recognition module. The whole network is

trained end-to-end, with the following objective function,

L = 1I∈SynthText(Lgeo) + Lrecog. (4)

For an input image I , the loss is comprised of two parts,
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Layer Name Configuration Out Size

conv1 x
3× 3, 1× 1, 1× 1, 64

16× 64
3× 3, 1× 1, 1× 1, 64

conv2 x

maxpool:2× 2, 2× 2, 0× 0
8× 323× 3, 1× 1, 1× 1, 128

3× 3, 1× 1, 1× 1, 128

conv3 x

maxpool:2× 1, 2× 1, 0× 0
4× 323× 3, 1× 1, 1× 1, 256

3× 3, 1× 1, 1× 1, 256

conv4 x
maxpool:2× 1, 2× 1, 0× 0

1× 31
2× 2, 1× 1, 0× 0, 256

Bi-LSTM 256 31

fc nc nc

Table 1: The architecture of recognition module. The

configuration has the following format: {kernelh ×
kernelw, strideh × stridew, padh × padw, channels} for

convolutional layers and maxpooling layers, {dimensions}
for the number of features in the LSTM hidden state or

fully-connected layers. “out size” is the feature map size

of convolutional layers or the sequence length of recurrent

layer. “nc” is the number of symbols.

as shown in Eqn. (4). Lgeo measures the deviation of the

predicted geometrical attributes with the ground truth. We

train our model with SynthText [15] and Synth90k [18].

Synth90k has no annotations of char-level or word-level

bounding boxes, so it is not used to supervise the training

of geometrical attributes prediction.

Lgeo =λ1Ltcl + λ2Ls + λ3Lsinθ

+ λ4Lcosθ + λ5Lsinϕ + λ6Lcosϕ,
(5)

where Ltcl is cross-entropy loss for TCL. Ls, Lsinθ, Lcosθ,

Lsinϕ, and Lcosϕ are calculated as Smoothed-L1 loss [11],

⎛
⎜⎜⎜⎜⎝

Ls

Lsinθ

Lcosθ

Lsinϕ

Lcosϕ

⎞
⎟⎟⎟⎟⎠

= SmoothedL1

⎛
⎜⎜⎜⎜⎜⎝

ŝ−s
s

ŝinθ − sinθ

ĉosθ − cosθ

ŝinϕ− sinϕ
ĉosϕ− cosϕ

⎞
⎟⎟⎟⎟⎟⎠

, (6)

where ŝ, ŝinθ, ĉosθ, ŝinϕ and ĉosϕ are the predicted val-

ues, while s, sinθ, cosθ, sinϕ and cosϕ are their ground

truth correspondingly. Lgeo for pixels outside the TCL is

set to 0, since the geometrical attributes make no sense to

non-TCL points.

The hyper-parameters, λ1, λ2, λ3, λ4, λ5, and λ6 are all

set to 1 in our experiments.

3.3.2 Training Strategy

The feature maps generated from the backbone are shared

by both the rectification module and the recognition mod-

ule. Our training strategy is two-staged. In the first stage,

the shared features are rectified with the ground truth geo-

metrical attributes. Then, the rectified features are used for

the recognition module training. Since Synth90k is not an-

notated with geometrical attributes, the shared features from

Synth90k are not rectified in this stage. In the second stage,

we use the predicted geometrical attributes for rectification.

In this stage, all shared features are rectified before being

fed into the recognition module.

4. Experiments

4.1. Datasets

We evaluate our method on 4 general benchmarks, which

mainly consist of regular text instances and 3 datasets with

irregular text instances, to demonstrate its rectification abil-

ity on curved, distorted and oriented text. A brief descrip-

tion of these datasets is as follows.

IIIT5K-Words (IIIT5K) [37] contains 3,000 web im-

ages for testing. Each image is associated with a 50-word

lexicon and a 1k-word lexicon.

Street View Text (SVT) [49] consists of 647 testing

images, which are collected from the Google Street View.

Many images are heavily corrupted by noise, blur or in low

resolution. Each image specifies a 50-word lexicon.

ICDAR 2003 (IC03) [34] contains 860 images of

cropped words after filtering. Following Wang et al. [49],

words with non-alphanumeric characters or less than three

characters are discarded. Each image has a 50-word lexicon

and a “full lexicon” which contains all lexicon words.

ICDAR 2013 (IC13) [24] inherits most of its data from

IC03 and contains 1,015 cropped word images.

ICDAR 2015 (IC15) [23] is collected via a pair of

Google Glasses without careful positioning and focusing.

The dataset contains 2,077 images with various distortions.

SVT-Perspective (SVTP) [40] is specifically proposed

to evaluate the performance of perspective text recognition

algorithms. It consists of 645 images for testing.

CUTE80 (CUTE) [41] is designed to evaluate curved

text recognition. It has 288 cropped images for testing.

4.2. Implementation Details

The proposed method is implemented in PyTorch. Im-

ages are resized to 64 × 256 before being fed into the net-

work. The resolutions of feature maps produced by the

shared backbone and the rectified feature maps are both

1/4 size of the input image, namely 16 × 64. Accordingly,

the size of ground truth maps F is also 16 × 64. We ex-

pand one more pixel around TCL since a single-point line is

prone to noise. The geometrical attributes on the expanded

points keep the same with the nearest point on the original

TCL. To apply TPS transformation in the mini-batch, we

equidistantly sample k=10 points after Ĉ is extracted. In
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optimum vpersie coffee meant ronaldo football

city marlboro storage capitol wyndham under
Figure 6: Selected results from SVTP and CUTE80, which suffer from severe distortion. For every three rows, the first row

shows the input image with evenly sampled center points (visualized as red points) and green control points. The second row

shows the rectified images. The last row is the recognition results.

total, 95 symbols are recognized, including digits, upper-

case and lower-case letters, 32 punctuation marks and an

end-of-sequence symbol (EOS).

Our model is trained on SynthText and Synth90k from

scratch. We adopt the ADADELTA [56] with default hyper-

parameters (rho=0.9, eps=1e-6, weight decay=0) to mini-

mize the objective function. Each mini-batch has 512 sam-

ples which are randomly selected from the two datasets. As

mentioned in Sec. 3.3.2, our model is trained in two stages.

In the first stage, we set the initial learning rate to 1.0 and

decay it to 0.1 and 0.01 at the 4th epoch and the 5th epoch.

The first stage finishes in the 6th epoch. In the second stage,

the predicted geometrical attributes are used for rectifica-

tion, and the model is trained for another epoch. All models

are trained on 4 NVIDIA TITAN Xp graphics cards.

4.3. Effect of Rectification

To analyze the effect of rectification, we remove the

rectification module in our pipeline as the baseline, where

the feature maps generated from the backbone are fed into

the recognition module directly. As shown in Tab. 3, the

model with the rectification module outperforms the base-

line nearly on all datasets, particularly on IC15 (+1.8%),

SVTP (+3.1%) and CUTE80 (+3.1%). The significant im-

provements on three irregular text datasets demonstrate the

effectiveness of the proposed ScRN. Furthermore, the at-

tached rectification module only needs negligible computa-

tion and storage overhead, since it only consists of two con-

volutional layers and some simple postprocessing. Specif-

ically, the baseline model and our method spend 12ms and

13ms in the inference stage, respectively.

To further explain the improvements, we visualize sev-

eral images with different types of distortions to illustrate

the rectification results in Fig. 6. With the proposed geo-

metrical attributes, ScRN can obtain a precise description of

the text shape, which finally results in evenly placed control

points along the top and bottom text edges. Therefore, the

Variants IIIT5k SVT IC03 IC13 IC15 SVTP CUTE

baseline 88.4 79.9 92.1 88.9 67.3 66.5 80.6

multi-loss 87.6 79.1 91.3 90.0 67.0 66.7 79.5

ours 88.5 81.3 91.2 90.0 68.8 68.2 81.9

Table 2: Recognition accuracy to explore the effect of recti-

fication module. All models are trained on SynthText only.

followed TPS transformation can easily rectify these irreg-

ular text images. Although some rectified images are still

slightly distorted, the images become more readable than

the original ones and can be correctly recognized.

Unlike ASTER, our model is end-to-end trained with

both the recognition loss and geometry loss. To make it

clear whether the extra geometry loss or the rectification

module improve the recognition results, we study another

variant of the proposed model called multi-loss baseline, in

which geometry loss is retained but the rectification mod-

ule is discarded. In this part, the baseline, multi-loss base-

line and our method are trained on SynthText only. Their

performance is given in Tab. 2. Compared to the baseline

model, the multi-loss variant achieves comparable results

while our method obtains improvements on most datasets,

except a slight decrease on IC03. These results reveal that

the improvements are derived from the rectification module,

rather than the extra geometry loss.

4.4. Comparison with STN-based Methods

In this section, we compare our method with two STN-

based methods. One is ASTER, a well-known STN-based

method. The other one is similar with ASTER, but extra

supervision is injected for STN. But we do not compare

our method with ASTER directly here, since our method

rectifies shared feature maps instead of raw images, consid-

ering complexity and efficiency. Therefore, we build an-

other STN-based model, namely STN baseline, for a fair

comparison. STN baseline shares the same backbone and

recognition module with our method. It only replaces our
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Figure 7: Rectified results produced by our proposed ScRN,

STN baseline and STN supervision, as well as their corre-

sponding recognition results. Red characters are mistak-

enly recognized characters. Underlines in red represent the

missed characters.

rectification module with an STN network, which has a sim-

ilar architecture with the rectification network of ASTER.

The other STN-based method has the same structure as

STN baseline. The only difference is the extra supervi-

sion to further improve the accuracy of the predicted con-

trol points. This variant derives from [26] and we name

it STN supervision. All methods share the same train-

ing strategy. The results are shown in Tab. 3. Overall,

STN baseline outperforms the baseline model, meanwhile

performs slightly worse than the STN supervision. The

conclusion is consistent with ASTER and [26]. Then we

detail the comparisons with our method as follows.

On the datasets with irregular text such as IC15, SVTP

and CUTE80, our method outperforms STN baseline with

improvements of 0.5%, 1.4% and 1.7%, respectively. With

the extra supervision to STN, STN supervision exceeds

STN baseline slightly but still performs worse than our

method by 0.2%, 1.1%, 1.0% on IC15, SVTP and CUTE80,

respectively. Profiting from the elaborate description of

text pose, the rectification is more robust and accurate. In

Fig. 7, we show some rectified results yielded by the three

methods. Overall, STN-based methods suffer from heavily

curved cases and predict imprecise control points, which

lead to wrong rectifications while our method works well.

Although our method fails to perfectly rectify text images

with messy background and text with rare fonts, it can ob-

tain more readable results.

The results reveal that the geometrical attributes are more

helpful than the weakly supervised network and the simple

supervised network for control points generation. Besides,

the prediction network for geometrical attributes is much

Variants IIIT5k SVT IC03 IC13 IC15 SVTP CUTE

baseline 94.4 86.9 94.7 93.6 76.9 77.7 84.4

STN baseline 94.1 87.6 95.0 93.2 78.2 79.4 85.8

STN supervision 94.0 88.1 94.9 93.8 78.5 79.7 86.5

ScRN 94.4 88.9 95.0 93.9 78.7 80.8 87.5

ScRN∗ 95.0 88.4 95.6 93.7 78.4 81.1 90.6

Table 3: Recognition accuracy of different variants.

smaller and only trained with synthetic data, which is effi-

cient and inexpensive.

We also study a variant of our model, named ScRN∗ in

Tab. 3 where we apply the rectification module to the input

image, rather than the shared feature maps. In this variant,

the backbone network is repeated twice without sharing pa-

rameters. So the elapsed time and the model size are nearly

doubled. Compared with this variant, our method achieves

comparable or even better results while avoiding the heavy

computation and space cost.

4.5. Comparison with State of the Art

We also compare our method with previous state-of-the-

art models. Tab. 4 summarizes the recognition results on

seven text recognition datasets. The datasets IIIT5k, SVT

and IC03 have lexicons to constrain recognition results.

When analyzing the recognition accuracy of different mod-

els on these datasets, the predicted word will be replaced

by the lexicon word that has the least edit distance with the

original prediction. We achieve 6 best results out of 12,

compared with other state-of-the-art methods.

Our method works effectively on datasets containing ir-

regular text. Especially, we get an 8% improvement on

CUTE80 compared with ASTER. We also outperform other

state-of-the-art methods on SVTP and IC15 by 2.3% and

2.6%, respectively. The improvement gives credit to our

rectification module, which attenuates text irregularities and

therefore decreases the recognition difficulty. Compared

with AON [8], our method provides a more intuitive way

to represent text directions. Recur to the symmetrical con-

straints brought by the geometrical attributes, our method

obtains more precise control points compared with ASTER.

Although our method mainly targets at irregular text

recognition, it also achieves comparable or even better per-

formance on regular datasets. Compared with ASTER,

we get respectively 1%, 0.5%, and 2.1% improvements on

IIIT5K, IC03, and IC13 with no lexicon. On SVT, our

method performs slightly worse than ASTER by 0.6%. We

conjecture that it is because the images in SVT always con-

tain some incomplete characters on the left side. A unidi-

rectional attention decoder in the left-to-right order suffers

from the noise while the bidirectional one in ASTER can

alleviate this effect.

4.6. Limitations

We also illustrate some failure cases produced by ScRN

in Fig. 8. In Fig. 8a, several characters are incorrectly rec-
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Methods
IIIT5k SVT IC03 IC13 IC15 SVTP CUTE80

50 1k 0 50 0 50 Full 0 0 0 0 0

Wang et al. [49] - - - 57.0 - 76.0 62.0 - - - - -

Mishra et al. [38] 64.1 57.5 - 73.2 - 81.8 67.8 - - - - -

Wang et al. [51] - - - 70.0 - 90.0 84.0 - - - - -

Bissacco et al. [5] - - - - - 90.4 78.0 - 87.6 - - -

Almazan et al. [1] 91.2 82.1 - 89.2 - - - - - - - -

Yao et al. [55] 80.2 69.3 - 75.9 - 88.5 80.3 - - - - -

Rodrı́guez-Serrano et al. [42] 76.1 57.4 - 70.0 - - - - - - - -

Jaderberg et al. [22] - - - 86.1 - 96.2 91.5 - - - - -

Su and Lu [47] - - - 83.0 - 92.0 82.0 - - - - -

Gordo [12] 93.3 86.6 - 91.8 - - - - - - - -

Jaderberg et al. [20] 97.1 92.7 - 95.4 80.7 98.7 98.6 93.1 90.8 - - -

Jaderberg et al. [19] 95.5 89.6 - 93.2 71.7 97.8 97.0 89.6 81.8 - - -

Shi et al. [44] 97.8 95.0 81.2 97.5 82.7 98.7 98.0 91.9 89.6 - - -

Shi et al. [45] 96.2 93.8 81.9 95.5 81.9 98.3 96.2 90.1 88.6 - 71.8 59.2

Lee et al. [25] 96.8 94.4 78.4 96.3 80.7 97.9 97.0 88.7 90.0 - - -

Yang et al. [52] 97.8 96.1 - 95.2 - 97.7 - - - - 75.8 69.3

Cheng et al. [7] 99.3 97.5 87.4 97.1 85.9 99.2 97.3 94.2 93.3 70.6 - -

Cheng et al. [8] 99.6 98.1 87.0 96.0 82.8 98.5 97.1 91.5 - 68.2 73.0 76.8

Liu et al. [29] - - 92.0 - 85.5 - - 92.0 91.1 74.2 78.9 -

Bai et al. [3] 99.5 97.9 88.3 96.6 87.5 98.7 97.9 94.6 94.4 73.9 - -

Liu et al. [31] 97.0 94.1 87.0 95.2 - 98.8 97.9 93.1 92.9 - - -

Liu et al. [30] 97.3 96.1 89.4 96.8 87.1 98.1 97.5 94.7 94.0 - 73.9 62.5

Liao et al. [27] 99.8 98.8 91.9 98.8 86.4 - - - 91.5 - - 79.9

Shi et al. [46] 99.6 98.8 93.4 97.4 89.5 98.8 98.0 94.5 91.8 76.1 78.5 79.5

ScRN (ours) 99.5 98.8 94.4 97.2 88.9 99.0 98.3 95.0 93.9 78.7 80.8 87.5

Table 4: Results across a number of methods and datasets. “50”, “1k”, “Full” are lexicons. “0” means no lexicon.

sermon __arbucksnelcome
(a)

spation trours tint

(b)

Figure 8: Some bad cases produced by our recognition sys-

tem. The meanings of these elements are the same as Fig. 6.

Incorrectly recognized characters are in red.

ognized, due to imperfect rectification. We observe that our

rectification module suffers from the curved text whose ter-

minal characters have a nearly horizontal orientation and are

close to the image borders. In Fig. 8b, ScRN is able to give

satisfactory rectification results, yet the recognizer fails to

handle such blurry or occlusive cases.

Although character-level annotations are needed in our

rectification module, it is labor-free and time-efficient to

obtain such annotations with the automatic synthesizing en-

gine [15]. In addition, extra images with only word-level

annotations, such as Synth90k, can also be added for train-

ing to further improve the performance.

5. Conclusion

In this paper, we have proposed a Symmetry-constrained

Rectification Network (ScRN) for scene text recognition.

Such a flexible module can be either easily incorporated

into existing recognition models or trained in an end-to-end

manner within a unified framework. Our text recognition

system incorporating the proposed ScRN achieves state-of-

the-art performance on a number of benchmark datasets, es-

pecially on those with a large portion of irregular text im-

ages. Due to the shared backbone, ScRN significantly im-

proves the recognition performance while requires negligi-

ble extra computation. Comprehensive experiments demon-

strate the effectiveness and robustness of our recognition

system. As for future work, we would like to extend the

proposed method to an end-to-end text recognition system

which can deal with text instances of arbitrary shapes.
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