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Abstract

As a postprocessing procedure, diffusion process has

demonstrated its ability of substantially improving the per-

formance of various visual retrieval systems. Whereas,

great efforts are also devoted to similarity (or metric) fu-

sion, seeing that only one individual type of similarity can-

not fully reveal the intrinsic relationship between objects.

This stimulates a great research interest of considering sim-

ilarity fusion in the framework of diffusion process (i.e., fu-

sion with diffusion) for robust retrieval.

In this paper, we firstly revisit representative methods

about fusion with diffusion, and provide new insights which

are ignored by previous researchers. Then, observing that

existing algorithms are susceptible to noisy similarities, the

proposed Regularized Ensemble Diffusion (RED) is bun-

dled with an automatic weight learning paradigm, so that

the negative impacts of noisy similarities are suppressed.

At last, we integrate several recently-proposed similarities

with the proposed framework. The experimental results sug-

gest that we can achieve new state-of-the-art performances

on various retrieval tasks, including 3D shape retrieval on

ModelNet dataset, and image retrieval on Holidays and Uk-

bench dataset.

1. Introduction

Object retrieval is a fundamental yet hot topic in comput-

er vision, which has attracted much attention for decades.

Given a query instance, its target is to find objects shar-

ing similar visual appearances with the query in a large

database. For a long time, it is crucial to design discrimina-

tive representations, so that the metric defined on the repre-

sentations can be robust to common deformations, such as

rotation, occlusion, illumination, etc. Conventionally, Bag-

of-Words (BoW) is usually employed thanks to the de-

sign of local descriptors (e.g., [27] for images, [26, 37] for

∗indicates equal contributions.
†corresponding author.

shapes, [42, 43, 15, 14] for 3D models). In recent years,

the rapid development of deep learning algorithms and G-

PU computing platforms has shifted the research attention

to deep-learned features [2, 31, 11, 47, 24], which yield a

remarkable performance boost against conventional hand-

crafted features.

Nevertheless, the underlying manifold structure is ne-

glected when directly computing the pairwise similarity in

the metric space. To this end, a re-ranking component called

diffusion process (see [10] for a survey) is usually plugged

as a postprocessing step to refine the search results. Dif-

fusion process models the relationship between objects on

graph-based manifold, wherein similarity values are dif-

fused along the geodesic path in an iterative manner.

Meanwhile, different visual similarities generally focus

on different aspects of objects. Thus, it probably occurs

that two objects quite distant in one similarity space may be

close in another. Therefore, enormous efforts are also de-

voted to similarity fusion for the sake of leveraging comple-

mentary nature among those distinct feature modalities. To

inherit the property of manifold-preserving from diffusion

process, fusion is usually reconsidered within the frame-

work of diffusion process, which leads to a new method-

ology called Fusion with Diffusion.

Existing fusion with diffusion methods either utilize a

naive solution by simply combining the edge weights of

multiple affinity graphs (Sec. 3.1), or consider a homoge-

neous fusion (Sec. 3.2). However, most of them are suscep-

tible to noisy similarities owing to the lack of weight learn-

ing mechanism. To remedy this, we propose a novel fusion

with diffusion method called Regularized Ensemble Diffu-

sion (RED) in Sec. 3.3. Compared with existing diffusion

processes, the contributions of RED are two folds: i) RED

is a theoretically sound and flexible approach to integrate

multiple (more than 2) similarities and learn their weight-

s in the diffusion framework; ii) the weights of similarities

are learned in a totally unsupervised setting, whose essence

is to seek for an optimal weight configuration to maximize

the smoothness of multiple tensor-order graph manifolds.

The validity of those fusion with diffusion methods (both
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existing and newly proposed ones) is evaluated on various

retrieval tasks. Benefiting from the progressive capacity of

deep-based visual representations and handcrafted features,

we are able to provide new state-of-the-art performances

with 3D model retrieval and natural image retrieval.

2. Revisiting Diffusion Process

We begin with preliminary facts about graph diffusion

process in this section. Assume G = (X,W ) is a weighted

graph, where X = {x1, x2, . . . , xN} is the set of vertices

representing the data points, and the edge between xi and xj

has weight wij ∈ W . Diffusion process learns a more faith-

ful similarity A ∈ R
N×N via iteration. According to the

taxonomy given in [10], variants of diffusion process pri-

marily differ in the definition of transition matrix and updat-

ing scheme. Below we review some representative variants

which can be deemed to operate on tensor product graph,

which is testified superior to other variants.

Setting D as a diagonal matrix with elements Dii =
∑N

j′=1 Wij′ , the transition matrix can be defined as P =

D−1W . Afterwards, Locally Constrained Diffusion Pro-

cess (LCDP) [50] propagates the similarities via

A(t+1) = PA(t)PT, (1)

where superscript t is the number of iterations. Since LCDP

cannot guarantee the convergence, the iteration has to be

stopped manually.

Apart from LCDP, Tensor Product Graph (TPG) diffu-

sion [51] is proven to reach convergence after a sufficient

number iterations with the updating scheme

A(t+1) = PA(t)PT + I, (2)

where I ∈ R
N×N is the identity matrix.

Meanwhile, there are some other kinds of diffusion pro-

cess, such as Manifold Ranking [56], Graph Transduction

(GT) [7], Self Diffusion (SD) [45], Self-smoothing Oper-

ator (SSO) [21], Contextual Dissimilarity Measure (CD-

M) [20], Rank Diffusion [34], RL-Sim Re-ranking [33], Re-

ciprocal kNN Graph Learning [32], etc.

3. Fusion with Diffusion

Different from diffusion process that works with only

one affinity graph, fusion with diffusion can tackle M ≥ 2
affinity graphs Gv = (X,W v)Mv=1 simultaneously. As

above, our target is to learn the new similarity A ∈ R
N×N

which 1) captures the geometry of the underlying manifold-

s, and 2) leverages the complementarity among multiple vi-

sual features.

Since most fusion with diffusion methods stem from cer-

tain variants of diffusion process, we will use

A(t+1) = αSA(t)ST + (1− α)I (3)

proposed in [4] to keep consistency, where S =
D−1/2WD−1/2 and α ∈ (0, 1) is a constant.

3.1. Naive Fusion

The most straightforward solution is to use a linear com-

bination of multiple similarities. Naive fusion simply aver-

ages the input similarities. Specifically, the transition matrix

used in Eq. (3) is computed as

S =
1

M

M
∑

v=1

Sv, (4)

where Sv is the transition matrix of the v-th affinity graph.

Subsequently, a standard diffusion process is applied. This

fusion strategy is extensively investigated in Locally Con-

strained Mixed Diffusion (LCMD) [28], Graph Fusion [53,

53], Yang et al. [49], etc.

Though simple to implement, naive solution totally ig-

nores the correlations among different similarities. More-

over, it is sensitive to noisy similarities, since it cannot adap-

tively decrease the weights of noise. Note that there exist

some heuristic ways of weight learning here [49, 55].

3.2. Tensor Product Fusion

Another typical fusion strategy is tensor product fusion.

Zhou et al. [57, 58] generalize TPG diffusion process [51]

to deal with two similarities, where the high-order graph is

built by computing the tensor product of two distinct affinity

graphs.

By slightly adjusting the transition matrix in Eq. (3), we

formulate the tensor product graph fusion as

A(t+1) = αS(2)A(t)S(1)T + (1− α)I, (5)

where S(1) and S(2) are the transition matrices associated

with two similarities, respectively.

As proven in Proposition 11, after sufficient iterations,

Eq. (5) converges to

A = lim
t→∞

A(t) = (1− α)vec−1
(

(I − αS)−1Ĩ
)

, (6)

where S ∈ R
N2

×N2

is the Kronecker product of S(1) and

S(2), i.e., S = S(1) ⊗ S(2), and I is the identity matrix of

the appropriate size. vec(·) is the vectorization of the input

matrix by stacking its columns one by one, and its inverse

function is vec−1(·). To simplify the notation, we define

Ỹ = vec(Y ) for any input matrix Y .

Though the iterative formulation of diffusion is inten-

sively exploited, it lacks theoretical explanations of how this

1Due to the space limitation, all the propositions used in the main paper

are in the supplementary material.
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kind of similarity fusion better captures the manifold struc-

ture. In this paper, we prove in Proposition 2 that the limit

of A(t) presented in Eq. (6) can be derived by solving

min
A

1

2

N
∑

i,j,k,l=1

W
(1)
ij W

(2)
kl (

Aki
√

D
(1)
ii D

(2)
kk

− Alj
√

D
(1)
jj D

(2)
ll

)2

+ µ

N
∑

k,i=1

(Aki − Iki)
2
,

(7)

where µ = 1
α − 1 ∈ (0,+∞) is a constant regularizer.

Eq. (7) consists of two terms. The first term measures the

smoothness of the tensor product graph, indicating that if xi

is similar to xj in the 1st similarity space, i.e., large W
(1)
ij ,

and xk is similar to xl in the 2nd similarity space, i.e., large

W
(2)
kl , then the learned similarities Aki and Alj should have

a small difference. The second term suggests that the self-

similarity Ikk should be preserved to a certain extent.

Here, we make a key observation that is essential in

this paper. Though formulated in an iterative model, ten-

sor product fusion can be theoretically explained using an

optimization framework. Its essence is to seek for an opti-

mal configuration A that minimizes the objective value of

Eq. (7), and consequently, A maximizes the smoothness of

the joint graph manifold. While the iterative formulation

in Eq. (5) can only integrate two similarity matrices, it is

possible to ensemble any number of such matrices in an op-

timization framework. More importantly, as we will show

below, it is possible to learn weights for these similarities so

that the smoothness of those manifolds is maximized.

Tensor product fusion considers the complementary

structures of two different affinity graphs. However, it e-

vades the weight learning issue, so that its performances

are easily deteriorated once one of the two affinity graph-

s involves some noisy edges. Furthermore, in general,

S(1) ⊗ S(2) 6= S(2) ⊗ S(1). That is to say, when fusing two

similarities, the order of computing the Kronecker product

makes differences.

3.3. Regularized Ensemble Diffusion

Insofar as we can conclude, learning the weights of mul-

tiple similarities has not been treated seriously by most ex-

isting fusion with diffusion methods. Since retrieval task

usually does not have labeled training data, we expec-

t weight learning can be done in an unsupervised manner,

possibly with fewer additional parameters. Inspired by [6]

where a weight learning paradigm can be exerted on affini-

ty graphs to assist neighborhood structure mining, the pro-

posed Regularized Ensemble Diffusion (RED) makes vi-

able the automatic weight learning for fusion with diffu-

sion. However, the key novelty of RED lies in three fact-

s. 1) Instead of using an exponential weight learner as [6],

RED adopts a more robust weight learning paradigm with

regularization. 2) Although formulated in an optimization

problem, RED can be efficiently solved in the spirit of the

standard iteration-based diffusion process. 3) RED inherits

the ability of capturing high-order relationships from tensor

product diffusion [10], so that it can learn a more discrimi-

native similarity.

Let β = {β1, β2, . . . , βM}, with βv (1 ≤ v ≤ M) be-

ing the weight of the v-th affinity graph. We formulate the

weight learning for β and the affinity learning for A in a

unified framework as

min
β,A

M
∑

v=1

βvH
v + µ

N
∑

k,i=1

(Aki − Iki)
2 +

1

2
λ‖β‖22,

s.t. 0 ≤ βv ≤ 1,

M
∑

v=1

βv = 1,

(8)

where

H
v =

1

2

N
∑

i,j,k,l=1

W
v
ijW

v
kl(

Aki
√

Dv
iiD

v
kk

− Alj
√

Dv
jjD

v
ll

)2, (9)

and λ > 0 is the weight Regularizer, controlling the distri-

bution of the learned weights. As Eq. (8) shows, if the v-th

graph is non-smooth (large Hv), it will be assigned small

weight βv such that the objective value will decrease.

At first glance, one may doubt that RED is relevant to the

iterative diffusion processes [10] expatiated above. Howev-

er, as we present below, its optimization heavily relates to

an iterative solver. The optimization of Eq. (8) can be de-

composed into two subproblems:

3.3.1 Update A, fix β

In this situation, 1
2λ‖β‖22 is a constant which can be omitted

directly. With similar algebraic operations used in Proposi-

tion 2, Eq. (8) can be transformed into

min
Ã

M
∑

v=1

βvÃ
T(I − S

v)Ã+ µ‖Ã− Ĩ‖2, (10)

where S
v = Sv ⊗ Sv ∈ R

N2
×N2

is the Kronecker product

of the v-th transition matrix with itself.

Closed-form Solution. The partial derivative of Eq. (10)

with respect to Ã is

2

M
∑

v=1

βv(I − S
v)Ã+ 2µ(Ã− Ĩ). (11)

Since Eq. (10) is convex with respect to Ã, one can directly

obtain its closed-form solution by setting Eq. (11) to zero.

Consequently, we get

Ã = (1−
M
∑

v=1

αv)(I −
M
∑

v=1

αvS
v)−1Ĩ , (12)
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where

αv =
βv

µ+
∑M

v′=1 βv′

. (13)

Finally, the optimal solution of this subproblem can be ob-

tained as A = vec−1(Ã).

Iteration-based Solver. However, the closed-form solution

in Eq. (12) is computationally prohibited even for smal-

l graphs. As we have to calculate the inverse of matrix of

size N2×N2, the required time complexity is O(N6)! This

naturally motivates us to seek for an efficient iteration-based

solver like the standard diffusion processes.

As presented in Proposition 3, the solution in Eq. (12)

can be recovered by running

A(t+1) =
M
∑

v=1

αvS
vA(t)SvT + (1−

M
∑

v=1

αv)I (14)

for a sufficient number of iterations with an arbitrary ini-

tialization of A(1). Consequently, the time complexity of

updating A is reduced from O(N6) to O(N3).

3.3.2 Update β, fix A

When A is fixed, Eq. (8) can be simplified as the following

problem

min
β

M
∑

v=1

βvH
v+

1

2
λ‖β‖22, s.t. 0 ≤ βv ≤ 1,

M
∑

v=1

βv = 1. (15)

It can be efficiently solved using coordinate descent.

In each iteration of coordinate descent, two elements βi

and βj are selected to be updated, while the others are fixed.

Taking into account the Lagrange function for the constraint
∑M

v=1 βv = 1, we have the following updating scheme

{

β∗
i =

λ(βi+βj)+(Hj
−Hi)

2λ ,

β∗
j = βi + βj − β∗

i .
(16)

The obtained β∗
i (or β∗

j ) may violate the constraint βv ≥ 0.

Hence, we set β∗
i = 0 if λ(βi + βj) + (Hj −Hi) < 0, and

vice versa for β∗
j .

The above optimization procedure is guaranteed to con-

verge. In each subproblem, we obtain its optimal solution.

By solving two subproblems alternatively, the objective val-

ue of Eq. (8) keeps decreasing monotonically. In addition,

the objective function is lower bounded by zero. Thus, the

convergence can be verified.

Compared with naive fusion and tensor product fusion,

RED is robust to noisy features by adaptively tuning the

weights β. More importantly, zero weights are allowed such

that irrelevant graphs can be totally filtered out, which is

impossible for the approach in [6]. The pseudocode of the

derived ensemble diffusion is presented in Alg. 1. Note that

Algorithm 1: Regularized Ensemble Diffusion.

Input:

M similarity matrices {W (v)}Mv=1 ∈ R
N×N , λ, µ

Output:

The learned similarity A;

begin

Initialize the weight β(v) = 1
M ;

repeat
Update A using Eq. (14);

Update β using Eq. (16);

until convergence

return A

as no prior knowledge is available to judge the discrimina-

tive power of different similarities in unsupervised retrieval,

a natural initialization for the weight βv is 1
M .

3.3.3 Further Explanation of the Loss Function

We consider here a pathological case of input similarity

W (△) that makes the loss function of RED uninformative.

This happens when W (△) = I is defined as

W
(△)
ij =

{

1, if i = j

0, if i 6= j,

which only contains self-similarity of each object.

Indeed, in this case, H(△) is equal to 0 according to E-

q. (9). Afterwards, RED will only favor the similarity W (△)

by setting β(△) = 1. In other words, all the other similari-

ties are discarded. However, we emphasize that the goal of

this paper is to learn a more faithful similarity from mul-

tiple pairwise similarities. Hence, the basic requirement is

that we need to know exactly a meaningful relationship be-

tween objects. Unfortunately, W (△) is meaningless in this

sense, since it cannot depict the relationship between two

objects. In this case, neither the proposed methods nor ex-

isting affinity learning algorithms can learn a meaningful

similarity for retrieval.

In summary, although the proposed method can handle

any types of similarities in terms of its basic theory, we do

not encourage the users to deliberately force W (△) to be the

input, since it is an ill-defined similarity.

3.4. Discussions

We summarize the inherent differences between those

fusion with diffusion methods in Table 1. As the table sug-

gests, the biggest defect of tensor product fusion is that it

can only deal with M = 2 similarities, limiting its promo-

tion where multiple similarities (M ≥ 2) are accessible.

Secondly, RED is the most robust to noise similarities ow-

ing to the weight learning mechanism, followed by naive
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fusion and tensor product fusion (see the experiments). The

robustness of naive fusion comes from a statistical assump-

tion that if two objects are similar in most similarity spaces,

they are true matching pairs.

The time complexity of naive fusion is the lowest. It on-

ly requires one diffusion step in Eq. (3), leading to a com-

plexity of O(tdN
3), where td is the number of iterations

in diffusion process. Tensor product fusion has to select 2
similarities each time to fulfill the diffusion step. Thus, its

entire time complexity is O
(

tdM(M − 1)N3
)

. The com-

plexity of RED has two parts. The first is updating A in

O(tdMN3) via Eq. (14), while the second part is updat-

ing β. It seems that we need O(N4) to compute Eq. (9).

However, as suggested in [10, 50], diffusion process is usu-

ally localized by propagating similarities only on k-nearest

neighbor graphs, leading to O(k4) in this step. Then, it

requires O(taM
2) (ta is the number of iterations in coor-

dinate descent) via Eq. (16) in RED. Considering the out-

er iteration number T in alternating optimization, the fi-

nal cost of RED is O
(

T (tdMN3 + k4 + taM
2)
)

. Since

td, ta, k,M ≪ N , we can conclude that the time complexi-

ty of all the above fusion with diffusion methods is dominat-

ed by O(N3), which is equivalent to the standard diffusion

process [10].

4. Experiments

In this section, we give a thorough evaluation of those

fusion with diffusion methods on various retrieval tasks.

4.1. 3D Model Retrieval

The proposed framework is firstly evaluated on 3D mod-

el retrieval on the ModelNet dataset, which is a large-scale

3D shape repository, currently consisting of 151, 128 3D

CAD models in 662 object categories. Following [46], two

subsets are used for evaluation, i.e., ModelNet40, contain-

ing 12, 311 shapes divided into 40 object categories, and

ModelNet10, containing 4, 899 shapes divided into 10 ob-

ject categories. As for the experimental setup, we use the

same training-testing split as [41, 5], and employ Area Un-

der precision-recall Curve (AUC) and mean Average Preci-

sion (mAP) as evaluation metrics. The parameters are giv-

en as k = 16 in kNN graph, µ = 0.3 for fastening self-

similarity, and λ = 19 for both two datasets.

Baselines. To obtain multiple similarities, we implement-

ed 4 representative baselines. They are 1) Volumetric CN-

N [35]: It is combined with multi-view Convolutional Neu-

ral Network (CNN), and uses 3DCNN with multi-oriented

pooling to obtain shape representations. 2) GIFT [5]: It is

an elaborative search engine focusing on the scalability of

3D shape retrieval. We follow its pipeline by training an

8-layer CNN as the view feature extractor, and apply Haus-

dorff matching to activations of the 7th fully-connected lay-

Methods
ModelNet40 ModelNet10

AUC mAP AUC mAP

Vol. CNN 80.39 79.53 91.24 89.97

GIFT 77.19 76.52 88.97 87.98

ResNet 80.12 79.41 89.02 88.17

PANO. 45.10 44.52 62.37 61.47

Table 2. The performances (%) of baselines on ModelNet40 and

ModelNet10 dataset, respectively.
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Figure 1. The objective value and mAP (%) of tensor product fu-

sion at each iteration on ModelNet40 dataset. The two similarities

fused are Volumetric CNN and GIFT.

er; 3) ResNet [16]: As a residual learning framework ca-

pable of training ultra deep networks, ResNet has shown

outstanding performances on image classification and ob-

ject detection. We introduce, for the first time, ResNet for

3D shape analysis. Here we finetune a 50-layer ResNet to

extract view features, and utilize Hausdorff distance as [5]

for shape matching; 4) PANORAMA [30]: it is a classi-

cal shape descriptor, which is comprised of Discrete Fouri-

er Transform and Discrete Wavelet Transform calculated on

panoramic views. The performances of those baselines are

listed in Table 2.

Analysis of Tensor Product Fusion. In Fig. 1, we plot the

objective value of Eq. (7) and the retrieval performance at

each iteration of diffusion process. As can be clearly seen,

when similarities are propagated iteratively, the objective

value keeps decreasing and the retrieval performance keeps

increasing until reaching the equilibrium. Such an obser-

vation validates our new perspective about tensor product

fusion in Sec. 3.2, i.e., the essence of the iterative solver of

tensor product fusion is to recover a closed-form solution of

an optimization problem, which measures the smoothness

of the joint graph manifold.

Table 3 lists the retrieval performances of tensor product

fusion by combining two of M similarities. Firstly, differ-

ent orders of fusing the same 2 similarities yield different

performances. Second, tensor product fusion totally fails

when one of the two to-be-fused similarities is not discrimi-

native enough. For instance, the fusion of Volumetric CNN

and PANORAMA achieves mAP 67.16, significantly lower

than the baseline mAP 79.53 of Volumetric CNN.

Comparison of Fusion Methods. Table 4 shows the com-

parison of different fusion methods. We can see that tensor
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Methods M #Weight #Noise #Complexity #Parameter #Performance

Naive fusion ≥2 × Good O(tdN
3) 0 Bad

Tensor product fusion =2 × Bad O
(

tdM(M − 1)N3
)

0 Good

RED ≥2
√

Excellent O
(

T (tdMN3 + k4 + taM
2)
)

1 Excellent

Table 1. The summary of fusion with diffusion methods. M denotes the number of similarities that can be handled. #Weight denotes

whether weight learning exists. #Noise denotes the robustness to noise. #Complexity denotes the time complexity. #Parameter denotes

the number of additional parameters over the standard diffusion process. #Performance denotes the experimental performances.

Vol. CNN GIFT ResNet PANO.

Vol. CNN - 83.23 83.77 67.16

GIFT 83.15 - 85.08 69.15

ResNet 83.86 85.12 - 69.56

PANO. 69.29 71.08 72.32 -

Table 3. The mAPs (%) of tensor product fusion on ModelNet40

dataset. The best and the worst fusing results are marked in red

and blue respectively.

Methods AUC mAP

Naive Fusion 85.26 84.55

Tensor Product Fusion 68.56∼86.00 67.16∼85.12

RED 87.03 86.30

Table 4. The performance comparison (%) of different fusion

methods on ModelNet40 dataset. As tensor product fusion can

only deal with two similarities, its performances are given in an

interval.

Dataset Vol. CNN GIFT ResNet PANO.

ModelNet10 0.281 0.332 0.387 0

ModelNet40 0.296 0.356 0.348 0

Table 5. The learned weights β by RED.

product fusion (its highest AUC and mAP are 86.00 and

85.12 respectively) outperforms naive fusion slightly, since

it considers the complementary structures between two ho-

mogenous graphs.

Moreover, the proposed RED achieves the best perfor-

mances due to the effective weight learning mechanism.

One desirable expectation is that the weight of PANORA-

MA should be smaller, since it leads to much lower re-

trieval performances. Table 5 presents the weights learned

by RED. As can be seen, RED sets it to 0 on both Mod-

elNet40 dataset and ModelNet10 dataset. As RED allows

for zeros weights, ultra non-smooth graphs (PANORAMA

in our case) can be totally eliminated. Therefore, RED can

be adapted to more diverse situations even if considerable

noise is present.

These results also indicate that if more noisy similari-

ties are fused, the performance difference between RED and

other fusion methods will be more dramatic. We will further

investigate this in Sec. 4.3.

Comparison with State-of-the-art. In Table 6, we give a

comparison with all the representative methods which re-

port retrieval performances on ModelNet dataset, available

at http://modelnet.cs.princeton.edu/. The

best-performing existing methods are Multi-view Convo-

Methods
ModelNet40 ModelNet10

AUC mAP AUC mAP

SPH [23] 34.47 33.26 45.97 44.05

LFD [8] 42.04 40.91 51.70 49.82

PANORAMA [30] 45.00 46.13 60.72 60.32

ShapeNets [46] 49.94 49.23 69.28 68.26

DeepPano [39] 77.63 76.81 85.45 84.18

MVCNN [41] - 78.90 - -

GIFT [5] 83.10 81.94 92.35 91.12

RED (ours) 87.03 86.30 93.20 92.15

Table 6. The performance comparison (%) with state-of-the-art on

ModelNet40 and ModelNet10 dataset.

lutional Neutral Network (MVCNN) [41] and GIFT [5].

Specifically, MVCNN proposes a view aggregation layer

to produce a compact 3D shape descriptor. By using met-

ric learning additionally, it reports mAP 78.90 on Model-

Net40 dataset. Meanwhile, GIFT introduces approximated

Hausdorff distance for multi-view matching and Aggregat-

ed Contextual Activation for re-ranking. It reports mAP

81.94 on ModelNet40 dataset. By contrast, the proposed

RED yields mAP 86.30 on ModelNet40 dataset, outper-

forming GIFT by 4.36 and MVCNN by 7.40 percent. Be-

sides, RED provides a new best performance on Model-

Net10 dataset (AUC 93.20 and mAP 92.15). We envision

that better performances can be achieved if more comple-

mentary similarities (e.g., [22, 14, 15, 11, 47, 48]) are fused

by RED.

4.2. Natural Image Retrieval

We also test the proposed methods on two well-known

benchmark datasets for image retrieval, i.e., Holidays

dataset [18] and Ukbench dataset [29].

Holidays dataset contains 1, 491 personal photos. 500
images are used as queries. Most queries only have 1-2
ground-truth images, which makes the dataset very chal-

lenging for diffusion-based re-ranking methods. The re-

trieval performance is measured by mean Average Precision

(mAP) over all the queries. Ukbench dataset consists of

10, 200 images, grouped into 2, 550 categories. Each image

is taken as the query in turn and the rest images serve as the

database. The evaluation metric is called N-S score, which

counts the average recall of the top-4 ranked images. Thus,

the perfect N-S score is 4. Since the scale and the category

distribution of the two datasets are quite different, we set

k = 7, λ = 28 on Holidays dataset, and k = 3, λ = 4K on

779

http://modelnet.cs.princeton.edu/


Datasets NetVLAD SPoC⋆ ResNet HSV

Holidays 88.29 86.07 81.83 61.83

Ukbench 3.739 3.698 3.709 3.195

Table 7. The performances of baselines on Holidays dataset (mAP)

and Ukbench dataset (N-S score), respectively. Note that SPoC

originally reports mAP 80.2 on Holidays dataset and N-S score

3.65 on Ukbench dataset, which is different from SPoC⋆.

Methods Holidays Ukbench

Naive Fusion 90.69 3.907

Tensor Product Fusion 85.12∼92.46 3.626∼3.884

QALF [55] 88.31 3.846

Graph Fusion [53] 90.65 3.918

SN [6] 91.72 3.919

RED (ours) 93.32 3.938

Table 8. The performance comparison of different fusion methods

on Holidays and Ukbench dataset.

Ukbench dataset. µ is set to 0.08 on both datasets.

Baselines. Four baseline similarities are re-implemented: 1)

NetVLAD [1]: An end-to-end trained network which has a

new generalized Vector of Locally Aggregated Descriptors

(VLAD) [19] layer; 2) SPoC [2]: A strategy about sum-

pooling activations of convolutional layers of pretrained C-

NNs; 3) ResNet [16]: The fully-connected layer of a pre-

trained 50-layer ResNet is used to extract holistic features;

4) HSV color histogram: Following [53, 52, 54], we extrac-

t 1000-dimensional HSV color histograms (20×10×5 bins

for H, S, V components). Note for deep features, the rotated

Holidays dataset released in [3] is used.

Except NetVLAD, all the extracted features are first-

ly square-rooted [9], and then L2 normalized. Especially

for SPoC, with such a square-root normalization, we ob-

tain much higher performance than the original one reported

in [2]. Table 7 shows the performance of our implementa-

tion of the 4 baseline methods.

Comparison of Fusion Methods. Table 8 compares the

results of different fusion methods. Besides naive fusion

and tensor product fusion, we also include three newly-

proposed image retrieval algorithms, including Graph Fu-

sion [53], Query-adaptive Late Fusion (QALF) [55] and S-

mooth Neighborhood (SN) [6]. All the competitors are im-

plemented using the same similarities as RED.

As a representative algorithm, Graph Fusion considers

a naive fusion of multiple similarities with equal weights.

To get multiple similarities directly comparable, the edge

weights are expressed using the Jaccard coefficient of two

neighborhood sets. Then, re-ranking is conducted on the

fused graph with PageRank. Apart from affinity learning

discussed in this paper, SN focuses on mining robust neigh-

borhood structures on multiple affinity graphs. It imposes

an exponential weight learner so that the weights of simi-

larities are always larger than 0. Hence, it suffers from the

fact that the negative effects of the noisy similarities cannot

be entirely eliminated. QALF calculates the weights of sim-

ilarities by studying the L shape of ranking list. The final

similarity is obtained by a weighted combination without

diffusion process.

In comparison, the superiority of RED firstly lies that we

adopt a more robust weight learning paradigm with theoret-

ical guarantee, than equal weights used by Graph Fusion,

the exponential weight learner used by SN and the heuristic

weight learning by QALF. More importantly, RED formu-

lates the weight learning and the tensor-order affinity learn-

ing in a unified framework, which can efficiently output a

more accurate search result. As can be drawn from Table 8,

RED achieves better performances on both datasets.

Note that the performance gap is more dramatic with

Holidays dataset. Our interpretation is that Ukbench dataset

has a very balanced category distribution, i.e., exactly 4 im-

ages per category, which makes it easier for algorithms to

fit such a distribution.

Comparison with State-of-the-art. In Table 9, a compre-

hensive comparison to various state-the-of-arts is presented.

The selected methods can be coarsely divided into two

kinds. As the focus of this paper, the first kind aims at fea-

ture fusion or diffusion, including LCMD [28], CDM [20],

kNN Re-ranking [38], and Hello Neighbor [36]. Yang et

al. [49] propose a data-driven approach to estimate weights

of different similarities, and report mAP 88.3 on Holidays

dataset and N-S score 3.86 on Ukbench dataset. By us-

ing different input similarities, Graph Fusion [53] originally

achieves mAP 84.64, and QALF [55] achieves 88.0 on Hol-

idays dataset. The second kind facilitates using deep learn-

ing for image retrieval, including Gordo et al. [13], Con-

volutional Kernel Network [31], MOP-CNN [12], SPoC [2]

and Neural codes [3]. Since this kind of algorithms usual-

ly ignores the geometry structure parameterized by one or

more similarities, it can be expected that they are compati-

ble with RED for the sake of better retrieval performances.

Moreover, PGM [25] proposes to use spatial verification,

and reports the highest mAP 89.2 on Holidays dataset to our

best knowledge. Possibly benefiting from the usage of lo-

cal descriptors, SN [6] originally achieves N-S score 3.98
on Ukbench dataset. By contrast, RED reports a very com-

petitive performance, i.e., the best mAP 93.3 on Holidays

dataset and the second best N-S score 3.94 on Ukbench

dataset.

4.3. Discussion

Discussions are primarily done with Holidays dataset.

Robustness to Noise. Most similarities used in our previous

experiments are informative in a sense. To simulate the situ-

ation where less informative similarities exist, we manually

generate 5 similarities by assigning each pair of objects a

random value in the interval (0,
√
2) as their pairwise dis-
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Datasets RED [25] [6] [13] [49] [40] [55] [53] [2] [12] [31] [3] [38] [28] [20] [36]

Holidays 93.3 89.2 - 89.1 88.3 88.1 88.0 84.6 80.2 80.2 79.3 79.3 76.2 - - -

Ukbench 3.94 - 3.98 - 3.86 - 3.84 3.83 3.65 - 3.76 3.56 3.52 3.70 3.68 3.67

Table 9. The comparison with state-of-the-art on Holidays dataset and Ukbench dataset.
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Figure 2. The retrieval performances with an increasing number of

noisy similarities (a), and the learned weights β (b) when 5 noisy

similarities are fused.

tance. The image retrieval performance of the 5 similari-

ties is around mAP 0.40. We add the noisy similarities to

the four baseline methods (Sec. 4.2), and plot the retrieval

performances of different fusion with diffusion methods by

varying the number of fused noisy similarities in Fig. 2(a).

For illustration, the performance of tensor product fusion

is given by the average value and the standard deviation of

mAPs of all combinations of similarity pairs.

It can be seen clearly that the performance of RED re-

mains almost unchanged even if 5 noisy similarities are in-

tegrated. The reason is that the weights of those 5 similari-

ties learned by RED are all zero, as shown in Fig. 2(b). In

contrast, naive fusion and tensor product fusion encounter

a sharp decrease in performance. When 5 noisy similarities

are fused, naive fusion only achieves mAP 14.82. There-

fore, one can clearly observe the significance of the weight

learning part used in RED.

Sensitivity to Parameters. The most important parameter

involved in RED is the weight regularizer λ. Fig. 3(a) shows

that the retrieval performances of RED are not so sensi-

tive to the parameter λ. In Fig. 3(b), the learned weights

of NetVLAD and HSV are illustrated. Firstly, we can ob-

serve that RED is tolerable to the change of λ, as the curve

changes gently. Secondly, when λ ≤ 12, NetVLAD always

has weight 1. When λ ≤ 100, HSV has weight 0. It reveals

that in a wide range of λ, RED can preserve the discrimi-

native power of informative similarities, and eliminate the

negative influence of non-informative similarities. At last,

we can conclude that when λ → ∞, equal weights will be

obtained. It also reveals that the determination of λ relies on

the degree of complementary nature among different simi-

larities. If rich complementarity exists, a relatively larger

λ is needed. The other parameters of RED also occur in

the conventional diffusion process, including k and µ. We

discuss them in the supplementary material.

Convergence Speed. The objective value of Eq. (8) and the

retrieval performance of RED as the iteration increases are
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Figure 3. The retrieval performance (a) and the learned weights β

(b) when varying λ.
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Figure 4. The objective value and mAP of RED at each iteration.

given in Fig. 4. As can be seen, RED converges very fast

within less than 4 iterations.

5. Conclusion

In this paper, we focus on similarity fusion in the frame-

work of diffusion process for retrieval. Considering that

most existing works are sensitive to noisy similarities,

we propose Regularized Ensemble Diffusion (RED), with

weights positively related to the smoothness of the (ten-

sor product) graph-based manifolds. Comprehensive exper-

imental results on 3D model retrieval and image retrieval

demonstrate the effectiveness of RED.

Although the iterative solver of RED significantly re-

duces its time complexity, it still requires O(N3) to finish

the similarity propagation step as the conventional diffu-

sion process [10]. Therefore, how to reduce the time com-

plexity of diffusion process [44] to meet the requirement of

real-time retrieval can be investigated further. Moreover,

RED needs a strategy to efficiently handle out-of-dataset

queries, as the iteration has to be done once a new query

is added. One possible solution can be adapted from the

newly-proposed Regional Diffusion [17], and we leave it

as our future work. The codes are available at https:

//sites.google.com/site/songbaihust/.
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visiting the vlad image representation. In ACM international

conference on Multimedia, pages 653–656, 2013. 7

[10] M. Donoser and H. Bischof. Diffusion processes for retrieval

revisited. In CVPR, pages 1320–1327, 2013. 1, 2, 3, 5, 8

[11] Y. Fang, J. Xie, G. Dai, M. Wang, F. Zhu, T. Xu, and

E. Wong. 3d deep shape descriptor. In CVPR, pages 2319–

2328, 2015. 1, 6

[12] Y. Gong, L. Wang, R. Guo, and S. Lazebnik. Multi-scale

orderless pooling of deep convolutional activation features.

In ECCV, pages 392–407, 2014. 7, 8

[13] A. Gordo, J. Almazán, J. Revaud, and D. Larlus. Deep image

retrieval: Learning global representations for image search.

In ECCV, pages 241–257, 2016. 7, 8

[14] Y. Guo, M. Bennamoun, F. Sohel, M. Lu, J. Wan, and N. M.

Kwok. A comprehensive performance evaluation of 3d local

feature descriptors. IJCV, pages 1–24, 2015. 1, 6

[15] Y. Guo, F. Sohel, M. Bennamoun, M. Lu, and J. Wan. Ro-

tational projection statistics for 3d local surface description

and object recognition. IJCV, 105(1):63–86, 2013. 1, 6

[16] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In CVPR, 2016. 5, 7

[17] A. Iscen, G. Tolias, Y. Avrithis, T. Furon, and O. Chum. Ef-

ficient diffusion on region manifolds: Recovering small ob-

jects with compact cnn representations. In CVPR, 2017. 8

[18] H. Jegou, M. Douze, and C. Schmid. Hamming embedding

and weak geometric consistency for large scale image search.

In ECCV, pages 304–317, 2008. 6

[19] H. Jegou, F. Perronnin, M. Douze, J. Sánchez, P. Perez, and

C. Schmid. Aggregating local image descriptors into com-

pact codes. TPAMI, 34(9):1704–1716, 2012. 7

[20] H. Jegou, C. Schmid, H. Harzallah, and J. Verbeek. Accu-

rate image search using the contextual dissimilarity measure.

TPAMI, 32(1):2–11, 2010. 2, 7, 8

[21] J. Jiang, B. Wang, and Z. Tu. Unsupervised metric learning

by self-smoothing operator. In ICCV, pages 794–801, 2011.

2

[22] E. Johns, S. Leutenegger, and A. J. Davison. Pairwise de-

composition of image sequences for active multi-view recog-

nition. In CVPR, 2016. 6

[23] M. Kazhdan, T. Funkhouser, and S. Rusinkiewicz. Rotation

invariant spherical harmonic representation of 3d shape de-

scriptors. In SGP, pages 156–164, 2003. 6

[24] Q. Ke and Y. Li. Is rotation a nuisance in shape recognition?

In CVPR, pages 4146–4153, 2014. 1

[25] X. Li, M. Larson, and A. Hanjalic. Pairwise geometric

matching for large-scale object retrieval. In CVPR, pages

5153–5161, 2015. 7, 8

[26] H. Ling and D. W. Jacobs. Shape classification using the

inner-distance. TPAMI, 29(2):286–299, 2007. 1

[27] D. G. Lowe. Distinctive image features from scale-invariant

keypoints. IJCV, 60(2):91–110, 2004. 1

[28] L. Luo, C. Shen, C. Zhang, and A. van den Hengel. Shape

similarity analysis by self-tuning locally constrained mixed-

diffusion. TMM, 15(5):1174–1183, 2013. 2, 7, 8

[29] D. Nistér and H. Stewénius. Scalable recognition with a vo-

cabulary tree. In CVPR, pages 2161–2168, 2006. 6

[30] P. Papadakis, I. Pratikakis, T. Theoharis, and S. J. Perantonis.

Panorama: A 3d shape descriptor based on panoramic views

for unsupervised 3d object retrieval. IJCV, 89(2-3):177–192,

2010. 5, 6

[31] M. Paulin, M. Douze, Z. Harchaoui, J. Mairal, F. Perronin,

and C. Schmid. Local convolutional features with unsuper-

vised training for image retrieval. In ICCV, pages 91–99,

2015. 1, 7, 8

[32] D. C. G. Pedronette, O. A. Penatti, and R. d. S. Torres. Un-

supervised manifold learning using reciprocal knn graphs in

image re-ranking and rank aggregation tasks. Image and Vi-

sion Computing, 32(2):120–130, 2014. 2

[33] D. C. G. Pedronette and R. D. S. Torres. Image re-ranking

and rank aggregation based on similarity of ranked lists. Pat-

tern Recognition, 46(8):2350–2360, 2013. 2

[34] D. C. G. Pedronette and R. d. S. Torres. Rank diffusion

for context-based image retrieval. In ICMR, pages 321–325,

2016. 2

[35] C. R. Qi, H. Su, M. Niessner, A. Dai, M. Yan, and L. J.

Guibas. Volumetric and multi-view cnns for object classifi-

cation on 3d data. In CVPR, 2016. 5

[36] D. Qin, S. Gammeter, L. Bossard, T. Quack, and

L. Van Gool. Hello neighbor: Accurate object retrieval with

k-reciprocal nearest neighbors. In CVPR, pages 777–784,

2011. 7, 8

[37] B. Ramesh, C. Xiang, and T. H. Lee. Shape classification us-

ing invariant features and contextual information in the bag-

of-words model. Pattern Recognition, 48(3):894–906, 2015.

1

[38] X. Shen, Z. Lin, J. Brandt, S. Avidan, and Y. Wu. Object re-

trieval and localization with spatially-constrained similarity

782



measure and k-nn re-ranking. In CVPR, pages 3013–3020,

2012. 7, 8

[39] B. Shi, S. Bai, Z. Zhou, and X. Bai. Deeppano: Deep

panoramic representation for 3-d shape recognition. IEEE

Signal Processing Letters, 22(12):2339–2343, 2015. 6

[40] M. Shi, Y. Avrithis, and H. Jégou. Early burst detection for

memory-efficient image retrieval. In CVPR, pages 605–613,

2015. 8

[41] H. Su, S. Maji, E. Kalogerakis, and E. G. Learned-Miller.

Multi-view convolutional neural networks for 3d shape

recognition. In ICCV, pages 945–953, 2015. 5, 6

[42] H. Tabia, M. Daoudi, J.-P. Vandeborre, and O. Colot. A new

3d-matching method of nonrigid and partially similar models

using curve analysis. TPAMI, 33(4):852–858, 2011. 1

[43] H. Tabia, H. Laga, D. Picard, and P.-H. Gosselin. Covariance

descriptors for 3d shape matching and retrieval. In CVPR,

pages 4185–4192, 2014. 1

[44] H. Tong, C. Faloutsos, and J. Pan. Fast random walk with

restart and its applications. In ICDM, pages 613–622, 2006.

8

[45] B. Wang and Z. Tu. Affinity learning via self-diffusion for

image segmentation and clustering. In CVPR, pages 2312–

2319, 2012. 2

[46] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and

J. Xiao. 3d shapenets: A deep representation for volumetric

shape modeling. In CVPR, 2015. 5, 6

[47] J. Xie, Y. Fang, F. Zhu, and E. Wong. Deepshape: Deep

learned shape descriptor for 3d shape matching and retrieval.

In CVPR, pages 1275–1283, 2015. 1, 6

[48] J. Xie, M. Wang, and Y. Fang. Learned binary spectral shape

descriptor for 3d shape correspondence. In CVPR, pages

3309–3317, 2016. 6

[49] F. Yang, B. Matei, and L. S. Davis. Re-ranking by multi-

feature fusion with diffusion for image retrieval. In WACV,

pages 572–579, 2015. 2, 7, 8

[50] X. Yang, S. Koknar-Tezel, and L. J. Latecki. Locally con-

strained diffusion process on locally densified distance s-

paces with applications to shape retrieval. In CVPR, pages

357–364, 2009. 2, 5

[51] X. Yang, L. Prasad, and L. J. Latecki. Affinity learning

with diffusion on tensor product graph. TPAMI, 35(1):28–

38, 2013. 2

[52] S. Zhang, M. Yang, T. Cour, K. Yu, and D. N. Metaxas.

Query specific fusion for image retrieval. In ECCV, pages

660–673, 2012. 7

[53] S. Zhang, M. Yang, T. Cour, K. Yu, and D. N. Metaxas.

Query specific rank fusion for image retrieval. TPAMI,

37(4):803–815, 2015. 2, 7, 8

[54] L. Zheng, S. Wang, Z. Liu, and Q. Tian. Packing and

padding: Coupled multi-index for accurate image retrieval.

In CVPR, pages 1939–1946, 2014. 7

[55] L. Zheng, S. Wang, L. Tian, F. He, Z. Liu, and Q. Tian.

Query-adaptive late fusion for image search and person re-

identification. In CVPR, pages 1741–1750, 2015. 2, 7, 8

[56] D. Zhou, J. Weston, A. Gretton, O. Bousquet, and

B. Schölkopf. Ranking on data manifolds. In NIPS, pages

169–176, 2004. 2

[57] Y. Zhou, X. Bai, W. Liu, and L. J. Latecki. Fusion with

diffusion for robust visual tracking. In NIPS, pages 2978–

2986, 2012. 2

[58] Y. Zhou, X. Bai, W. Liu, and L. J. Latecki. Similarity fusion

for visual tracking. IJCV, pages 1–27, 2016. 2

783


