
CenterNet: Keypoint Triplets for Object Detection

Kaiwen Duan1∗ Song Bai2 Lingxi Xie3 Honggang Qi1,4 Qingming Huang1,4,5 † Qi Tian3 †

1University of Chinese Academy of Sciences
2Huazhong University of Science and Technology 3Huawei Noah’s Ark Lab

4Key Laboratory of Big Data Mining and Knowledge Management, UCAS 5Peng Cheng Laboratory

duankaiwen17@mails.ucas.ac.cn {songbai.site,198808xc}@gmail.com

{hgqi,qmhuang}@ucas.ac.cn tian.qi1@huawei.com

Abstract

In object detection, keypoint-based approaches often ex-

perience the drawback of a large number of incorrect object

bounding boxes, arguably due to the lack of an additional

assessment inside cropped regions. This paper presents an

efficient solution that explores the visual patterns within in-

dividual cropped regions with minimal costs. We build our

framework upon a representative one-stage keypoint-based

detector named CornerNet. Our approach, named Center-

Net, detects each object as a triplet, rather than a pair, of

keypoints, which improves both precision and recall. Ac-

cordingly, we design two customized modules, cascade cor-

ner pooling, and center pooling, that enrich information

collected by both the top-left and bottom-right corners and

provide more recognizable information from the central re-

gions. On the MS-COCO dataset, CenterNet achieves an

AP of 47.0%, outperforming all existing one-stage detec-

tors by at least 4.9%. Furthermore, with a faster infer-

ence speed than the top-ranked two-stage detectors, Center-

Net demonstrates a comparable performance to these de-

tectors. Code is available at https://github.com/

Duankaiwen/CenterNet.

1. Introduction

Object detection has been significantly improved with

the help of deep learning, especially convolutional neural

networks [12] (CNNs). In the current era, one of the most

popular flowcharts, the anchor-based flowchart [11, 13, 28,

32, 34], places a set of rectangles with predefined sizes (an-

chors) on an image and regresses the anchors to the de-

sired place with the help of ground-truth objects. These ap-

proaches often require a large number of anchors to ensure a

sufficiently high IoU (intersection over union) rate with the

ground-truth objects, and the size and aspect ratio of each

∗This work was done when the first author was interning at Huawei Noah’s Ark

Lab.
†Qingming Huang and Qi Tian are the first and second corresponding authors of

the paper, respectively.

person

potted plantpotted plant

potted plant

potted plant

potted plant

potted plant

potted plant

potted plant

potted plant

potted plant

potted plant

potted plant

potted plant

potted plant

potted plant

potted plant

potted plant

potted plant

potted plant

potted plant
potted plant

vase
vase

broccoli

broccoli

broccoli

broccoli

broccoli

broccoli
broccoli

broccoli

broccoli

broccoli

broccoli

broccolibroccoli

broccoli

broccoli

broccoli

broccoli

broccoli

broccoli

broccoli
broccoli

broccolibroccolibroccoli

broccoli

broccoli
broccoli

broccoli

broccoli

broccoli
broccoli

broccoli

broccoli

broccoli

broccoli

broccoli
broccoli

broccoli

carrot

carrot

carrot

carrot

carrot

horse
horse

horse

horse

Figure 1: In the first row, we visualize the top 100 bound-

ing boxes (according to the MS-COCO dataset standard) of

CornerNet. Ground-truth and predicted objects are marked

in blue and red, respectively. In the second row, we show

that correct predictions can be determined by checking the

central parts of the boxes.

anchor must be manually set. In addition, anchors and the

convolutional features are usually misaligned, which is not

conducive to the bounding box classification task.

To overcome the drawbacks of anchor-based approaches,

a keypoint-based object detection pipeline named Corner-

Net [21] was proposed. This pipeline represents each object

using a pair of corner keypoints, which bypasses the need

for anchor boxes and achieves state-of-the-art one-stage ob-

ject detection accuracy. Nevertheless, the performance of

CornerNet is still restricted by its relatively weak ability to

refer to the global information of an object. That is, be-

cause each object is constructed by a pair of corners, the

algorithm sensitively detects the boundaries of objects with-

out being aware of which pairs of keypoints that should be

grouped into objects. Consequently, as shown in Figure 1,

CornerNet often generates incorrect bounding boxes, most

of which could be easily filtered out with some complemen-

tary information, e.g., the aspect ratio.

To address this issue, we equip CornerNet with the abil-

6569



ity to perceive the visual patterns within each proposed re-

gion, enabling it to identify the correctness of each bound-

ing box by itself. In this paper, we present a low-cost yet ef-

fective solution named CenterNet, which explores the cen-

tral part of a proposal, i.e., the region that is close to the

geometric center of a box, with one extra keypoint. We in-

tuit that if a predicted bounding box has a high IoU with

the ground-truth box, then the probability that the center

keypoint in the central region of the bounding box will be

predicted as the same class is high, and vice versa. Thus,

during inference, after a proposal is generated as a pair of

corner keypoints, we determine if the proposal is indeed an

object by checking if there is a center keypoint of the same

class falling within its central region. The idea, as shown in

Figure 1, is to use a triplet, instead of a pair, of keypoints to

represent each object.

Accordingly, to improve the detection of center key-

points and corners, we propose two strategies to enrich cen-

ter and corner information, respectively. The first strategy

is center pooling, which is used in the branch for predict-

ing center keypoints. Center pooling helps the center key-

points obtain more recognizable visual patterns within ob-

jects, which makes it easier to perceive the central part of

a proposal. We achieve this by obtaining the maximum

summed response in both the horizontal and vertical di-

rections of the center keypoint on a feature map for cen-

ter keypoint prediction. The second strategy is cascade

corner pooling, which equips the original corner pooling

module [21] with the ability to perceive internal informa-

tion. We achieve this by obtaining the maximum summed

response in both the boundary and internal directions of ob-

jects on a feature map for corner prediction. Empirically,

we verify this two-directional pooling method is more sta-

ble, i.e., more robust to feature-level noises, which would

contribute to the improvement of both precision and recall.

We evaluate the proposed CenterNet on the MS-COCO

dataset [26], one of the most popular benchmarks for large-

scale object detection. CenterNet, which incorporates both

center pooling and cascade corner pooling, reports an AP of

47.0% on the test-dev set, outperforming all existing one-

stage detectors by a large margin. With an average inference

time of 270ms using a 52-layer hourglass backbone [30]

per image and 340ms using a 104-layer hourglass back-

bone [30] per image, CenterNet is quite efficient yet closely

matches the state-of-the-art performance of the other two-

stage detectors.

2. Related Work

Object detection involves locating and classifying ob-

jects. In the deep learning era, powered by deep convo-

lutional neural networks, object detection approaches can

be roughly categorized into two main types of pipelines,

namely, two-stage approaches and one-stage approaches.

Two-stage approaches divide the object detection task into

two stages: extract RoIs (Region of Interesting) and then

classify and regress the RoIs.

R-CNN [12] uses a selective search method [45] to locate

RoIs in the input images and uses a DCN-based region-wise

classifier to classify the RoIs independently. SPP-Net [14]

and Fast-RCNN [11] improve R-CNNs by extracting RoIs

from the feature maps. Faster-RCNN [34] is allowed to be

trained end to end by introducing RPN (region proposal net-

work). RPN can generate RoIs by regressing the anchor

boxes. Later, the anchor boxes are widely used in the object

detection task. Mask-RCNN [13] adds a mask prediction

branch on Faster-RCNN and can thereby detect objects and

predict their masks at the same time. R-FCN [6] replaces

fully connected layers with position-sensitive score maps

to improve the detection of objects. Cascade R-CNN [4]

addresses the problem of overfitting at training and quality

mismatch at inference by training a sequence of detectors

with increasing IoU thresholds. keypoint-based object de-

tection approaches [43, 29, 50, 49] are proposed to avoid the

disadvantages of the use of anchor boxes and bounding box

regression. Other meaningful works are proposed for dif-

ferent problems in object detection, e.g., a [52, 22] focus on

the architecture design, a [1, 10, 37, 47] focus on the con-

textual relationship, and a [23, 3] focus on the multi-scale

unification.

One-stage approaches remove the RoI extraction process

and directly classify and regress the candidate anchor boxes.

YOLO [32] uses fewer anchor boxes than other ap-

proaches (divide the input image into an S × S grid) to

perform regression and classification. YOLOv2 [33] im-

proves the performance by using more anchor boxes and a

new bounding box regression method. SSD [28] places an-

chor boxes densely over an input image and uses features

from different convolutional layers to regress and classify

the anchor boxes. DSSD [9] introduces a deconvolution

module into SSD to combine low- and high-level features.

While R-SSD [18] uses pooling and deconvolution opera-

tions in different feature layers to combine low-level and

high-level features. RON [20] proposes a reverse connec-

tion and an objectness prior to extract multiscale features

effectively. RefineDet [48] refines the locations and sizes of

the anchor boxes twice, exploiting the merits of both one-

stage and two-stage approaches. CornerNet [21] is another

keypoint-based approach that directly detects an object us-

ing a pair of corners. Although CornerNet achieves high

performance, it still has room for improvement.

3. Our Approach

3.1. Baseline and Motivation

This paper uses CornerNet [21] as the baseline. For

detecting corners, CornerNet produces two heatmaps: a

6570



Backbone
 Embeddings 

and Offsets

Offsets

Figure 2: Architecture of CenterNet. A convolutional backbone network applies cascade corner pooling and center pooling to

output two corner heatmaps and a center keypoint heatmap, respectively. Similar to CornerNet, a pair of detected corners and

the similar embeddings are used to detect a potential bounding box. Then the detected center keypoints are used to determine

the final bounding boxes.

Method FD FD5 FD25 FD50 FDS FDM FDL

CornerNet 37.8 32.7 36.8 43.8 60.3 33.2 25.1

Table 1: False discovery rates (%) of CornerNet. The false

discovery rate reflects the distribution of incorrect bound-

ing boxes. The results suggest that the incorrect bounding

boxes account for a large proportion of all bounding boxes.

heatmap of the top-left corners and a heatmap of the

bottom-right corners. The heatmaps represent the locations

of keypoints of different categories and assign a confidence

score to each keypoint. In addition, CornerNet also pre-

dicts the embedding and a group of offsets for each corner.

The embeddings are used to identify whether two corners

are from the same object. The offsets learn to remap the

corners from the heatmaps to the input image. To generate

object bounding boxes, top-k left-top corners and bottom-

right corners are selected from the heatmaps according to

their scores. Then, the distance of the embedding vectors

of a pair of corners is calculated to determine if the paired

corners belong to the same object. An object bounding box

is generated if the distance is less than a threshold. The

bounding box is assigned a confidence score equal to the

average scores of the corner pair.

In Table 1, we provide a detailed analysis of Corner-

Net. We calculate the FD1 (false discovery) rate of Cor-

nerNet on the MS-COCO validation dataset, defined as the

proportion of incorrect bounding boxes. The quantitative

results demonstrate that the incorrect bounding boxes ac-

count for a large proportion of all bounding boxes even at

low IoU thresholds, e.g., CornerNet obtains a 32.7% FD

rate at IoU = 0.05. This means, 32.7 out of every 100 ob-

ject bounding boxes have an IoU lower than 0.05 with the

ground-truth. The FD rate of the small incorrect bound-

ing boxes, with a value of 60.3%, is even higher, than that

1FD = 1 − AP, where AP denotes the average precision at

IoU = [0.05 : 0.05 : 0.5] on the MS-COCO dataset. Additionally, FDi =
1 − APi, where APi denotes the average precision at IoU = i/100, FDscale =
1 − APscale, where scale = {small,medium, large}, denotes the scale of the

object.

of larger bounding boxes. One of the possible reasons for

this result is that CornerNet cannot assess the regions inside

the bounding boxes. One potential method to make Corner-

Net [21] perceive the visual patterns in bounding boxes is to

adapt CornerNet into a two-stage detector, which uses the

RoI pooling [11] to assess the visual patterns in bounding

boxes. However, such a paradigm is known to be computa-

tionally expensive.

In this paper, we propose a highly efficient alternative

called CenterNet to explore the visual patterns within each

bounding box. For object detection, our approach uses a

triplet, rather than a pair, of keypoints. By doing so, our

approach still keeps a one-stage detector, but partially in-

herits the functionality of RoI pooling. Our approach only

considers the center information, and the cost is minimal.

In addition, we further introduce the visual patterns within

objects into the keypoint detection process by using center

pooling and cascade corner pooling.

3.2. Object Detection as Keypoint Triplets

The overall network architecture is shown in Figure 2.

We represent each object using a center keypoint and a pair

of corners. Specifically, we embed a heatmap for the cen-

ter keypoints on the basis of CornerNet and predict the off-

sets of the center keypoints. Then, we use the method pro-

posed in CornerNet [21] to generate top-k bounding boxes.

However, to effectively filter out incorrect bounding boxes,

we leverage the detected center keypoints and conduct the

following procedure: (1) select top-k center keypoints ac-

cording to their scores; (2) use the corresponding offsets to

remap these center keypoints to the input image; (3) define a

central region for each bounding box and check whether the

central region contains center keypoints. Note that the class

labels of the checked center keypoints should be the same

as the class label that of the bounding box; (4) if a center

keypoint is detected in the central region, we preserve the

bounding box. The score of the bounding box is replaced

by the average scores of the triple points, i.e., the top-left

6571



(a) (b)

Figure 3: (a) The central region when n = 3. (b) The cen-

tral region when n = 5. The solid rectangles denote the

predicted bounding boxes and the shaded regions denote the

scalable central regions.

corner, the bottom-right corner, and the center keypoint. If

there are no center keypoints detected in the central region,

the bounding box will be removed.

The size of the central region in the bounding box affects

the detection results. For example, small central regions

lead to a low recall rate for small bounding boxes, while

large central regions lead to a low precision for large bound-

ing boxes. Therefore, we propose a scale-aware central re-

gion to adaptively fit the size of bounding boxes. The scale-

aware central region tends to generate a relatively large cen-

tral region for a small bounding box and a relatively small

central region for a large bounding box. Let tlx and tly de-

note the coordinates of the top-left corner of i and brx and

bry denote the coordinates of the bottom-right corner of i.

Define a central region j. Let ctlx and ctly denote the coor-

dinates of the top-left corner of j and cbrx and cbry denote

the coordinates of the bottom-right corner of j. Then tlx,

tly, brx, bry, ctlx, ctly, cbrx and cbry should satisfy the

following relationship:
8
>>>>>>>>>>><

>>>>>>>>>>>:

ctlx =
(n+ 1)tlx + (n− 1)brx

2n

ctly =
(n+ 1)tly + (n− 1)bry

2n

cbrx =
(n− 1)tlx + (n+ 1)brx

2n

cbry =
(n− 1)tly + (n+ 1)bry

2n

(1)

where n is odd and determines the scale of the central re-

gion j. In this paper, n is set to be 3 and 5 for the scales of

bounding boxes less than and greater than 150, respectively.

Figure 3 shows two central regions when n = 3 and n = 5,

respectively. According to Equation (1), we can determine a

scale-aware central region and then check whether the cen-

tral region contains center keypoints.

3.3. Enriching Center and Corner Information

Center pooling. The geometric centers of objects do not

always convey very recognizable visual patterns (e.g., the

human head contains strong visual patterns, but the center

keypoint is often in the middle of the human body). To ad-

dress this issue, we propose center pooling to capture richer

and more recognizable visual patterns. Figure 4(a) shows

(a) (b) (c)

Figure 4: (a) Center pooling takes the maximum values in

both horizontal and vertical directions. (b) Corner pooling

only takes the maximum values in boundary directions. (c)

Cascade corner pooling takes the maximum values in both

boundary directions and internal directions of objects.

the principle of center pooling. The detailed process of cen-

ter pooling is as follows: the backbone outputs a feature

map and to determine whether a pixel in the feature map

is a center keypoint, we need to find the maximum value

in both the horizontal and vertical directions and add these

values together. By doing so, center pooling helps improve

the detection of center keypoints.

Cascade corner pooling. Corners are often outside objects,

which lack local appearance features. CornerNet [21] uses

corner pooling to address this issue. The principle of cor-

ner pooling is shown in Figure 4(b). Corner pooling aims

to find the maximum values on the boundary directions to

determine corners. However, this makes corners sensitive

to edges. To address this problem, we need to enable cor-

ners to extract features from central regions of the object.

The principle of cascade corner pooling is presented in Fig-

ure 4(c). Cascade corner pooling first looks along a bound-

ary to find a maximum boundary value and then looks in-

side the box along with the location of the boundary maxi-

mum value2 to find an internal maximum value; finally, the

two maximum values are added together. By cascade corner

pooling, the corners obtain both the boundary information

and the visual patterns of objects.

Both center pooling and the cascade corner pooling can

be easily achieved by applying the corner pooling [21] in

different directions. Figure 5(a) shows the structure of the

center pooling module. To take a maximum value in a spe-

cific direction, e.g., the horizontal direction, we only need to

connect the left pooling and the right pooling in sequence.

Figure 5(b) shows the structure of a cascade top corner pool-

ing module, in which the white rectangle denotes a 3 × 3

convolution followed by batch normalization. Compared

with the top corner pooling in CornerNet [21], a left corner

pooling is added before the top corner pooling.

3.4. Training and Inference

Training. Our method is implemented in Pytorch [31] and

the network is trained from scratch. The resolution of the

2For the topmost, leftmost, bottommost and rightmost boundary, look vertically

towards the bottom, horizontally towards the right, vertically towards the top and

horizontally towards the left, respectively.

6572














