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Abstract—Projective analysis is an important solution in three-
dimensional (3D) shape retrieval, since human visual perceptions
of 3D shapes rely on various 2D observations from different
viewpoints. Although multiple informative and discriminative
views are utilized, most projection-based retrieval systems suffer
from heavy computational cost, and thus cannot satisfy the basic
requirement of scalability for search engines. In the past three
years, shape retrieval contest (SHREC) pays much attention to the
scalability of 3D shape retrieval algorithms, and organizes several
large scale tracks accordingly [1]-[3]. However, the experimental
results indicate that conventional algorithms cannot be directly
applied to large datasets. In this paper, we present a real-time
3D shape search engine based on the projective images of 3D
shapes. The real-time property of our search engine results from
the following aspects: 1) efficient projection and view feature
extraction using GPU acceleration; 2) the first inverted file, called
F-IF, is utilized to speed up the procedure of multiview matching;
and 3) the second inverted file, which captures a local distribution
of 3D shapes in the feature manifold, is adopted for efficient
context-based reranking. As a result, for each query the retrieval
task can be finished within one second despite the necessary
cost of IO overhead. We name the proposed 3D shape search
engine, which combines GPU acceleration and inverted file (twice),
as GIFT. Besides its high efficiency, GIFT also outperforms state-
of-the-art methods significantly in retrieval accuracy on various
shape benchmarks (ModelNet40 dataset, ModelNetl0 dataset,
PSB dataset, McGill dataset) and competitions SHREC14LSGTB,
ShapeNet Core55, WM-SHREC07).

Index Terms—3D shape retrieval, CNN, shape retrieval contest
(SHRECQ).
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1. INTRODUCTION

3D shape retrieval is a fundamental issue in many fields, in-
cluding multimedia computing, computer vision, graphics and
pattern recognition. Given a query shape, the goal of retrieval is
to return a list of shapes which share similar geometric charac-
teristic or semantic meaning with the query. Thus, one crucial
part of 3D shape retrieval is to design informative and dis-
criminative features, so that visually similar shapes will have
small dissimilarities. Enormous efforts [4]-[8] have been de-
voted to retrieval effectiveness, that is to say, to boost the retrieval
accuracy.

With the rapid development of large scale public 3D repos-
itories, e.g., Google 3D Warehouse or TurboSquid, and large
scale shape benchmarks, e.g., ModelNet [9], SHape REtrieval
Contest (SHREC) [1]-[3], the scalability of 3D shape retrieval
algorithms becomes increasingly important for practical appli-
cations. However, as suggested in [1], plenty of those conven-
tional algorithms cannot scale up to large 3D shape databases
due to their high time complexity. It indicates that retrieval effi-
ciency issue has been more or less ignored by previous works.

Meanwhile, owing to the fact that human visual perception
of 3D shapes depends upon 2D observations, projective analy-
sis has become a basic and inherent tool in 3D shape domain
for a long time, with applications to segmentation [10], match-
ing [11], reconstruction, recognition [12], [13], etc. Specifically
in 3D shape retrieval, projection-based methods demonstrate im-
pressive performances. Especially in recent years, the success
of planar image representation [14], makes it easier to describe
3D models using depth or silhouette projections.

Generally, a typical 3D shape search engine is comprised of
the following four components:

1) Projection rendering. With a 3D model as input, the output
of this component is a collection of projections in depth
buffers, binary masks or RGB images. Most methods set
an array of virtual cameras at pre-defined viewpoints to
capture views. These viewpoints can be the vertices of
a dodecahedron [15], located on the unit sphere [16], or
around the lateral surface of a cylinder [11]. In most cases,
pose normalization [17] is needed for the sake of invari-
ance to translation, rotation and scale changes.

2) View feature extraction. The role of this component is to
obtain multiple view representations, which affects the
retrieval quality largely. A widely-used paradigm is Bag-
of-Words (BoW) [14] model. BoW has shown its superi-
ority as natural image descriptors in many fields, such as
image search [18], [19] and classification [20]. However,
in order to get better performances, many features [1]
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Fig. 1.

are of extremely high dimension. As a consequence, raw
descriptor extraction (e.g., SIFT [21]), quantization and
distance calculation are all time-consuming.

3) Multi-view matching. This component establishes the cor-
respondence between two sets of view features, and re-
turns a matching cost between two 3D models. Since at
least a set-to-set matching strategy [22] is required, this
stage suffers from high time complexity even when us-
ing the simplest Hausdorff matching. Hence, the usage
of some more sophisticated matching strategies on large
scale 3D datasets is limited due to their heavy computa-
tional cost.

4) Re-ranking. It aims at refining the initial ranking list by
using some extra information. For retrieval problems,
since no prior or supervised information is available,
contextual similarity measure is usually utilized. A
classic context-based re-ranking methodology for shape
retrieval is diffusion process [23], which exhibits out-
standing performances on various datasets. However,
as graph-based and iterative algorithms, many variants
of diffusion process (e.g., locally constrained diffusion
process [24], [25]), generally require the computational
complexity of O(T'N?), where N is the total number of
shapes in the database and 7' is the number of iterations.
In this sense, diffusion process does not seem to be
applicable for real-time analysis.

In this paper, we present a real-time 3D shape search engine
(see Fig. 1) that includes all the aforementioned components.
It combines Graphics Processing Unit (GPU) acceleration and
Inverted File (Twice), hence we name it GIFT. In on-line pro-
cessing, once a user submits a query shape, GIFT can react and
present the retrieved shapes within one second (the off-line pre-
processing operations, such as CNN model training and inverted
file establishment, are excluded). GIFT is evaluated on several
popular 3D benchmark datasets, especially on two tracks of
SHape REtrieval Contest (SHREC) which focuses on scalable
3D retrieval. The experimental results on retrieval accuracy and

Structure of the proposed 3D shape search engine GIFT.

query time demonstrate the potential of GIFT in handling large
scale data.

In summary, our main contributions lie in three aspects.

1) GPU is used to speed up the procedure of projection ren-
dering and feature extraction.

In multi-view matching procedure, a robust version of
Hausdorff distance for noise data is approximated with an
inverted file, which allows for extremely efficient match-
ing between two view sets without impairing the retrieval
performances too much.

In the re-ranking component, a new feature fusion algo-
rithm based on fuzzy set theory is proposed, which can
fuse hierarchical activations of neural network using fuzzy
aggregation operator. Different from diffusion processes
of high time complexity, our re-ranking here is quite time
efficient on account of using inverted file again.

Compared with the previous conference version [26], this ar-
ticle gives a deeper analysis about the evolution of related algo-
rithms. To make GIFT suitable to tackle more than two similarity
measures, an approach called “neighbor multi-augmentation” is
proposed. By doing so, we also improve the retrieval perfor-
mances on all the shape benchmarks by combining the deep
features of GIFT with handcrafted features. Meanwhile, GIFT
reports excellent retrieval performances on the latest ShapeNet
Core55 large scale competition. Afterwards, we show that GIFT,
with some simple modifications, can be applied to shape clas-
sification task, and achieves comparable classification accu-
racies on ModelNet dataset. Promising future topics that can
be investigated in the proposed framework are summarized
at last.

The rest of paper is organized as follows. In Section II, we
briefly introduce some related works. The details of the pro-
posed search engine are given in Section III. In Section IV,
comprehensive experiments and comparisons with other state-
of-the-art algorithms are conducted on various shape bench-
marks and competitions. Future work is discussed in Section V
and conclusions are given in Section VI.

2)

3)
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II. RELATED WORK

3D shape retrieval has been extensively investigated for along
time, and plenty of algorithms were proposed for 3D model pre-
processing, feature extraction, shape matching, etc. A thorough
and exhausted review of those algorithms is unrealistic. There-
fore, we mainly focus on projection-based methods which have
a close relationship with our work.

Light Field Descriptor (LFD) [15], composed of Zernike mo-
ments and Fourier descriptors, is one of the most representa-
tive projection-based algorithms. Its basic assumption is that
if two 3D shapes are similar, they also look similar from all
viewpoints. Vranic et al. [27] define a composite shape descrip-
tor, which is generated using depth buffer images, silhouettes,
and ray-extents of a polygonal mesh. In [11], a novel descrip-
tor called PANORAMA is proposed. It projects 3D shapes to
the lateral surface of a cylinder, and describes the obtained
panoramic view by 2D Discrete Fourier Transform and 2D Dis-
crete Wavelet Transform. To ensure the rotation invariance as
far as possible, Continuous PCA (CPCA) and Normals PCA
(NPCA) [17] are both applied to 3D shapes before rendering the
projection. Daras et al. [28] propose Compact Multi-view De-
scriptor (CMVD), where 18 characteristic views are described
by 2D Polar-Fourier Transform, 2D Zernike Moments, and 2D
Krawtchouk Moments.

Meanwhile, some researchers consider borrowing the devel-
opment of feature learning in natural image analysis, so as to at-
tain discriminative representations of projections. For example,
Furuya et al. [29] introduce the Bag of visual Words (BoW) [14]
to 3D shape retrieval, where local descriptors [21] are extracted
on depth projections of 3D shapes and encoded into histogram
feature via vector quantization. By putting the visual descrip-
tors from different projections in one bag, Vectors of Locally
Aggregated Tensors (VLAT) [16] is investigated to produce an
equal-sized feature for each 3D shape. Tabia et al. [30], [31]
firstly explore the usage of covariance matrices of descriptors,
instead of the descriptors themselves, in 3D shape analysis.
Bai et al. [32] introduce a two layer coding framework which
jointly encodes a pair of views. By doing so, the spatial ar-
rangement of multiple views is captured which is shown to be
rotation-invariant.

Since deep learning has been proven to be a powerful tool
in many computer vision and pattern recognition topics, there
is an growing interest to leverage this popular paradigm in
3D shape community. As an extension of PANORAMA [11],
Shi et al. [33] choose to pool the response of each row of
feature map so that the deep panoramic representation re-
mains unchanged when the 3D shape rotates with regard to
its principal axis. Multi-view Convolutional Neural Networks
(MVCNN) [34] sets a view pooling layer in the architecture
of CNN to aggregate the multiple view representations. Note
that some deep-learning-based algorithms do not learn from
projections of shapes. For example, Wu et al. [9] perform 3D
Convolution on voxel grid of shapes with Deep Belief Network.
They also construct a large scale 3D shape repository called
ModelNet. In [35]-[38], deep learning is applied to mid-level
shape descriptors, instead of raw shape data.
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Fig. 2. Illustration of projection rendering. 6, . is the polar angle in xy plane
and 6., is the angle between the camera and =y plane.

Besides, there are also some works which focus on the opti-
mal matching strategy (e.g., clock matching [39], vector extrap-
olation matching [40], random forest [41], elastic net match-
ing [42]), discriminative view selection (e.g., adaptive views
clustering [43]), feature fusion (e.g., 2D/3D Hybrid [44], Hybrid
BoW [45], ZFDR [46]) and re-ranking (Multi-Feature Anchor
Manifold Ranking [47], diffusion process [23]).

As opposed to the above algorithms concerning retrieval ac-
curacy only, we establish a shape search system which attaches
more importance to retrieval efficiency.

III. PROPOSED SEARCH ENGINE

In this section, the details of each component of the proposed
search engine are given.

A. Projection Rendering

Prior to projection rendering, pose normalization for each 3D
shape is needed in order to attain invariance to some common
geometrical transformations. However, unlike many previous
algorithms [11], [17], [44] that require rotation normalization
using some Principal Component Analysis (PCA) techniques,
we only normalize the scale and the translation in our system.
Our concerns are two-fold: 1) PCA techniques are not always
stable, especially when dealing with some specific geometrical
characteristics such as symmetries, large planar or bumpy sur-
faces; 2) the view feature used in our system can tolerate the
rotation issue to a certain extent, though cannot be completely
invariant to such changes. In fact, we observe that if enough
projections (more than 25 in our experiments) are used, one can
already achieve reliable retrieval performances.

The projection procedure is as follows. Firstly, as illustrated
in Fig. 2, we place the centroid of each 3D shape at the origin
of a spherical coordinate system, and resize the maximum polar
distance of the points on the surface of the shape to unit length.
Then, we evenly divide [0, 27] into 8 parts to get the values of
0,., and divide [0, 7] into 8 parts to get the values of 6,;. For
each pair (6,.,60.;), a virtual camera is set on the unit sphere.
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At last, we render one projected view in depth buffer at each
combination of #,, and 6,,;. Therefore, we will have N, = 64
depth projections for each 3D shape. For the sake of speed, GPU
is utilized here so that for each 3D shape, the average time cost
of rendering 64 projections is only 30 ms.

B. Feature Extraction via GPU Acceleration

Feature design has been a crucial problem in 3D shape re-
trieval for a long time owing to its great influence on the retrieval
accuracy. Though extensively studied, almost all the existing al-
gorithms ignore the efficiency of the feature extraction.

To this end, our search engine adopts GPU to accelerate the
procedure of feature extraction. Impressed by the superior per-
formance of deep learning approaches in various visual tasks,
we propose to use the activation of a Convolutional Neural Net-
work (CNN). The CNN used here takes depth images as input.
Specifically, let Y = {y1,y2, ..., yn, } denote the training data
with NV, shapes. For each y; € ) with label /;, we can obtain
its projective image set P(y;) = {vi.1,Yi.2,-- -, Yi.n, }- So, the
labeled training images in NN.-th category are

Py, = yijlvij € P(yi),yi € V,li = N} (D

Equation (1) suggests that projections are assigned to the labels
of their corresponding 3D shape.

The CNN architecture used in this paper is VGG-S as de-
fined in [48], which consists of five successive convolutional
layers and three fully connected layers. The last SoftMax layer
produces the probability distribution over the label space. We
finetune the CNN model (pretrained on ImageNet) with pro-
jections, by minimizing the classification error for Py, using
back-propagation.

Let X = {1, x9,...,zy } denote the testing database, where
retrieval evaluation is performed. In the testing phase, each
shape z, € X is rendered with N, projections P(z,) =
{zp1,2p1,..., 25 n,}. By feeding each projection z, ; €
P(z,) into the trained network in the forward direction, we
gain its activation with regard to the V;-th layer of CNN as

pj = F(xp, Ni) @

where function F(-) is the feature extractor associated with
the trained CNN model. We normalize each activation in its
Euclidean norm to avoid scale changes. It only takes 56 ms on
average to extract the view features for a 3D shape.

Since no prior information is available to judge the discrim-
inative power of activations of different layers, we propose a
robust feature fusion algorithm described in Section III-D. It
can fuse those homogenous features efficiently based on fuzzy
set theory in the re-ranking component.

C. Inverted File for Multiview Matching

Consider a query shape z, and a shape z, from the
database X = {x1,29,...,2x}. Through (2), we can ob-
tain two feature sets V(z,) = {q1,¢2,....qn, } and V(z,) =
{p1,p2,...,pN, } respectively, where N, is the number of
views. g; (or p;) denotes the view feature assigned to the i-th
view of shape z, (or z,).

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 19, NO. 6, JUNE 2017

A 3D shape search engine requires a multi-view matching
component to establish a correspondence between two sets of
view features. These matching strategies are usually metrics
defined on sets (e.g., Hausdorff distance) or graph matching
algorithms (e.g., Hungarian method, Dynamic Programming,
clock-matching). However, these pairwise strategies are time-
consuming for a real-time search engine. Among them, Haus-
dorff distance may be the most efficient one, since it only in-
volves some basic algebraic operations without sophisticated
optimizations.

Recall that the standard Hausdorff distance measures the dif-
ference between two sets, and it is defined as

Dlowoy) = 5%, i doom) O

where function d(-) measures the distance between two input
vectors. In order to eliminate the disturbance of isolated views in
the query view set, a more robust version of Hausdorff distance
is given by

1
— min d(g;,p;)- 4)
Nv j Tp

q;EV(:vq)p eV(xy)

D(l‘q,l‘p) =

For the convenience of analysis, we consider its dual form in
the similarity space as

Stap) =5 O

Y gieV(wy)

i My 5
p71§¥?§p>3(q p/) ( )

where s(-) measures the similarity between the two input vec-
tors. In this paper, we adopt the cosine similarity.

As can be seen from (4) and (5), Hausdorff matching re-
quires the time complexity O(N x N,?) for retrieving a given
query (assuming that there are N shapes in the database).
Though the complexity grows linearly with respect to the
database size, it is still intolerable when N gets larger. How-
ever, by analyzing (5), we can make several observations: 1)
let s*(¢;) = max;<j<n, s(¢;,p;), the similarity calculations of
s(qi,p;) are unnecessary when s(g;,p;) < s*(¢;), since these
similarity values are unused due to the max operation, i.e., only
s*(g;) is kept; 2) when considering from the query side, we
can find that s*(g;) counts little to the final matching cost if
s*(¢g;) < & and £ is a small threshold. Those observations sug-
gest that although the matching function in (5) requires cal-
culating all the pairwise similarities between two view sets,
some similarity calculations, which generate small values, can
be eliminated without impairing the retrieval performance too
much.

In order to avoid these unnecessary operations and improve
the efficiency of multi-view matching procedure, we adopt
inverted file for an approximation by adding the Kronecker delta
response

1, 2=y
5;0,1/ = (6)
‘ 0, z#y
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Entry b, | Entryb, Entry b; Entry b, | Entry by
Shape ID View feature
X, q;
X, p,
Fig. 3. Structure of the first inverted file.
into (5) as
S m) = 5 (ar.p) 6 a)
TgyTp) = max. s\qi;Pj) - Oc(q;).c(p;)
N, pEV(z,) (gi):c(pj

qi €V<I41)

where the quantizer ¢(x) = arg minj<;<x ||z — b;||* maps the
input feature into an integer index that corresponds to the near-
est codeword of the given vocabulary B = {by, by, ..., bk }. As
a result, the contribution of p; to the similarity measure, which
satisfies ¢(g;) # c(p; ), can be directly set to zero, without esti-
mating s(g;,p;) explicitly.

In conclusion, our inverted file for multi-view matching is
built as illustrated in Fig. 3. For each view feature, we store
it and its corresponding shape ID in the nearest codeword. It
should be mentioned that we can also use Multiple Assignment
(MA), i.e., assigning each view to multiple codewords, to im-
prove the matching precision at the sacrifice of memory cost
and on-line query time. In this scenario, the definition of § is not
changed and each view ¢; will have more than one assignment

c(q;).

D. Inverted File for Reranking

A typical search engine usually involves a re-ranking com-
ponent [49], aiming at refining the initial candidate list by
using some contextual information. In GIFT, we present a
re-ranking algorithm called Aggregated Contextual Activation
(ACA), which can integrate activations of multiple layers of
neural network. It follows the same principles as diffusion pro-
cess [23], [50], i.e., the similarity between two shapes should go
beyond their pairwise formulation and is influenced by their
contextual distributions along the underlying data manifold.
However, different from diffusion process which has high time
complexity, ACA enables real-time re-ranking, which can be
potentially applied to large scale data.

Let Ny (z,) denote the neighbor set of x,. The elements
in N (z,) are determined by k-nearest neighbors (kNN)
rule, i.e., we select those =, € A, which have the top-k largest
similarity values to x, computed using (7). Similar to [51],
[52], our basic idea is that the similarity between two shapes
can be more reliably measured by comparing their neighbors
using Jaccard similarity as

, _ Wiz, nNi(ay)]
S (zq,2p) = Wi (24) UNG ()]

One can find that the neighbors are treated equally in (8). How-
ever, the top-ranked neighbors are more likely to be true pos-

(®)
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itives. So a more proper behavior is increasing the weights of
top-ranked neighbors.

To achieve this, we define the neighbor set using fuzzy set
theory. Different from classical (crisp) set theory where each
element either belongs or does not belong to the set, fuzzy set
theory allows a gradual assessment of the membership of ele-
ments in a set. We utilize S(xz4, x;) to measure the membership
grade of z; in the neighbor set of x,. Accordingly, (8) is re-
written as

D N () (WG (2, ) TR (S (g, 1), S (@, 33))
D N () U N () AX (S (g, 23), S (2, 24))
©))
Since considering equal-sized vector comparison is more con-
venient in real computational applications, we use F € RY
to encode the membership values. The ¢-th element in Fj, is

S,(xqaxp):

given as
S(xg,m;) ifz; € Nj(xg)
Fyli] = . (10)
0 otherwise.
Based on this definition we replace (9) with
N . . .
/ : F, 1], F,
S(mq,xp): Zz:lmln( Q[ZL P[Z]) (11)

S0y max (Fy i), Fy [i])
Considering vector F; is sparse, we can view it as sparse ac-
tivation of shape x,, where the activation at coordinate % is
the membership grade of z; in the neighbor set N, (z,). Equa-
tion (11) utilizes the sparse activations Fy, and F), to define the
new contextual shape similarity measure.

Note that all the above analysis is carried out for only one sim-
ilarity measure. However, in our specific scenario, the outputs
of different layers of CNN are usually at different abstraction
resolutions. That is, through (2), we can have multiple repre-
sentations for each projective image of 3D shapes by selecting
different layers N;. Two different layers of CNN lead to two
different similarities S") and S(?) by (7), which in turn yield
two different sparse activations Fq(l) and Fq<2> by (10). Since
no prior information is available to assess their discriminative
power, our goal now is to fuse them in an unsupervised manner.
To achieve this, we utilize the fuzzy aggregation operator in
fuzzy set theory, by which several fuzzy sets are combined in
a desirable way to produce a single fuzzy set. We consider two
fuzzy sets represented by the sparse activations qu and qu
(the extension to more than two activations is similar). Their
aggregation is then defined as

o ((Fé”)a +<Fq<2>>“>*

5 12)

which computes the element-wise generalized means with ex-
ponent « of Fq(l) and Fq<2>. Instead of using arithmetic mean,
we use this generalized means (« is set to 0.5 throughout our
experiments). Our concern for this is to avoid the problem that
some artificially large elements in [, dominate the similarity
measure. This motivation is very similar to handling bursty
visual elements in Bag-of-Words (BoW) model (see [53] for
examples).
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In summary, we call the feature in (12) Aggregated Contextual
Activation (ACA). Next, we will introduce some improvements
of (12) concerning its retrieval accuracy and computational ef-
ficiency.

1) Improving Accuracy: Similar to diffusion process, the
proposed ACA requires an accurate estimation of the context
in the data manifold. Here we provide three alternative ways to
improve the retrieval performance of ACA without depriving its
efficiency.

Neighbor augmentation: The first one is to augment [}, using
the neighbors of the second order, i.e., the neighbors of the
neighbors of x,. Inspired by query expansion [11], the second
order neighbors are added as

FO .= 1;
N ()]

SR

2, N ()

13)

Neighbor co-augmentation: Our second improvement is to
use a so-called “neighbor co-augmentation”. Specifically, the
neighbors generated by one similarity measure are used to aug-
ment contextual activations of the other similarity measure, for-
mally defined as

1
Y= -
LN (=)l

Z Fi(1>

;i 6/\/’,52)(1:(1)
1
Fq(?) — — Z Fi<2)' (14)
|Nk <%)|m,6/\/,f“(z,,)

This formula is inspired by “co-training” [54]. Essentially, one
similarity measure tells the other one that “I think these neigh-
bors to be true positives, and lend them to you such that you can
improve your own discriminative power”.

Neighbor multi-augmentation: In case that more than two
similarity measures are accessible, neighbor co-augmentation
cannot be directly used. To make the proposed system suitable
to tackle M (M > 2) similarity measures, we propose to use
neighbor multi-augmentation. qu, the j-th (1 < 7 < M) acti-
vation of shape z,, is augmented as

) 1 '
U E(J) (15)
q NkA(quqr,eJ\/;(-’vq) l
where
M
NI<;A($Q) = U Nk(,] )(wq)- (16)

=14

Equation (16) suggests that the union of the other M — 1
neighbor set is used to augment F;").

Note that the size of neighbor set used here may be different
from that used in (10). In order to distinguish them, we denote
the size of neighbor set in (10) as k;, while that used in (13),
(14) and (15) as ks.

2) Improving Efficiency: Considering that the length of I,
is N, one may doubt the efficiency of similarity computa-
tion in (11), especially when the database size N is large.
In fact, I} is a sparse vector, since Fj only encodes the
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Entry 1 Entry 1 Entry i Entry N-1 | Entry N
Shape ID Membership value | Neighbor set cardinality
X, Fyil
s Fyli [IFlls
Fig. 4. Structure of the second inverted file.

neighborhood structure of z,. This observation motivates us
to utilize an inverted file again to leverage the sparsity of Fj.
Now we derive the feasibility of applying inverted file in Jaccard
similarity theoretically.

The numerator in (11) is computed as

Smin (BB = Y

i|F, [i]£0,F, [i] 40

min(F, [i], F, [i])

+ Y min(FiED+ Y min(E[i, Fl).
i Fy [i]=0 i|Fy [1]=0
A7)
Since all values of the aggregated contextual activation are
non-negative, the last two items in (17) are equal to zero.
Consequently, (17) can be simplified as

Zmin(Fq[i]an[i]) = Z

i|Fy [i1#0,F) [i]#0

min(F, [i], F, [1])

(18)
which only requires accessing non-zero entries of the query, and
hence can be computed efficiently on-the-fly.

Although the calculation of the denominator in (11) seems
sophisticated, it can be expressed as

S max (F i, £y i)
= I1Fly + 1By s = 3 win (F, [, 5 )

>

iIF, [i)0.F, [i]#0

= |Fylls + ”Fle - min(Fq[i]an[i])' (19)

Besides the query-dependent operations (the first and the last
items), (19) only involves an operation of L; norm calculation
of F,,, which is simply equal to the cardinality of the fuzzy set
N () and can be pre-computed off-line.

Our inverted file for re-ranking is built as illustrated in Fig. 4.
Ithas exactly N entries, and each entry corresponds to one shape
in the database. For each entry, we first store the cardinality of
its fuzzy neighbor set. Then, we find those shapes which have
non-negative membership values in this entry. Those shape IDs
and the membership values are stored in this entry.

IV. EXPERIMENTS

In this section, we evaluate the performances of GIFT on
various shape benchmarks and competitions, including Mod-
elNet40 dataset [9], ModelNet10 dataset [9], SHape REtrieval
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Contest 2014 Large Scale Comprehensive Track Benchmark
(SHREC14LSGTB) [1], ShapeNet Core55 dataset [3], Prince-
ton Shape Benchmark (PSB), Watertight Models track of SHape
REtrieval Contest 2007 (WM-SHRECO07) dataset [55] and
McGill dataset [56].

If not specified, we adopt the following setup throughout
our experiments. The projection rendered for each shape is
N, = 64. In multi-view matching procedure, the approximate
Hausdorff matching defined in (7) with an inverted file of 256
entries is used. Multiple Assignment is set to 2. We use two
pairwise similarity measures, which are calculated using acti-
vations from N; = 5 layer (denoted as L5 below) and N; =7
layer (denoted as L7 below), respectively. In re-ranking compo-
nent, each similarity measure generates one sparse activation F;,
to capture the contextual information for the 3D shape x,, and
neighbor co-augmentation in (14) is used to produce Fq(l) and
F?. Finally, both F\" and F\* are integrated by (12) with
exponent a = 0.5. All the experiments are done on a server with
an Intel (R) Xeon (R) CPU (3.50 GHz), 64GB RAM memory
and 4 GTX NVIDIA TITAN X.

To quantify the retrieval performance, the following evalua-
tion metrics are employed:

1) Mean Average Precision (MAP): The average precision

where a positive shape is returned.

2) Area Under Curve (AUC): The mean area under the
precision-recall curves.

3) Nearest Neighbor (NN): The percentage of the closest
matches that belongs to the same class as the query.

4) First Tier (FT): The recall for the top (C' — 1) matches in
the ranking list, where C' is the number of shapes in the
category which contains the query shape.

5) Second Tier (ST): The recall for the top 2 x (C' — 1)
matches in the ranking list, where C' is the number of
shapes in the category which contains the query shape.

6) F-measure: The harmonic mean of precision and recall.

7) Discounted Cumulative Gain (DCG): A statistic that at-
taches more importance to the correct results near the front
of the ranked list than the correct results at the end of the
ranked list, under the assumption that a user is less likely
to consider elements near the end of the list.

All the aforementioned evaluation metrics range from 0 to 1,
and larger values indicate better performances. We refer to [3],
[9], [57] for their detailed definitions.

Note that different 3D shape datasets and competitions favor
different evaluation metrics, and we will follow their convention
in our experiments. For example, we use MAP and AUC on
ModelNet 40 dataset and Modelnet 10 dataset, use MAP and F-
measure on ShapeNet CORESS dataset. NN, FT and ST are used
on the SHREC14LSGTB, PSB dataset, WM-SHRECO07 and
McGill dataset. Moreover, we also leverage Precision-Recall
curves and confusion matrix to visualize the performances of
the proposed GIFT against other state-of-the-art algorithms.

A. ModelNet

ModelNet is a large-scale 3D CAD model dataset introduced
by Wu et al. [9] recently, which contains 151,128 3D CAD
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TABLE I
PERFORMANCE COMPARISON WITH THE STATE-OF-THE-ART
ON MODELNET40 DATASET AND MODELNET10 DATASET

Methods ModelNet40 ModelNet10
AUC MAP AUC MAP
SPH [58] 34.47% 33.26% 45.97% 44.05%
LFD [15] 42.04% 40.91% 51.70% 49.82%
PANORAMA [11] 45.00% 46.13% 60.72% 60.32%
ShapeNets [9] 49.94% 49.23% 69.28% 68.26%
DeepPano [33] 77.63% 76.81% 85.45% 84.18%
MVCNN [34] - 78.90% - -
Ls 63.70% 63.07% 78.19% 77.25%
Ly 77.28% 76.63% 89.03% 88.05%
GIFT 83.10% 81.94% 92.35% 91.12%
0.9 0.9
0.8 0.8
0.7 0.7
5 0.6 g 0.6,
305 305
= 04 = 04
0.3f —©—spH 0.3f| —e—SPH
—e— LFD —e—LFD
NE NEst o
0.1 —o— mveNN 0.1{| —o— DeepPano
—e— GIFT(ours) —e— GIFT(ours)
00 0.1 02 03 04 05 06 0.7 08 09 1 0 01 02 03 04 05 06 07 08 09 1
(@ (b)
Fig.5. Precision-recall curves on (a) ModelNet40 dataset and (b) ModelNet10
dataset.

models divided into 660 object categories. Two subsets are used
for evaluation, i.e., ModelNet40 and ModelNet10. The former
one contains 12,311 models, and the latter one contains 4,899
models. We evaluate the performance of GIFT on both subsets
and adopt the same training and test split as in [9], namely
randomly selecting 100 unique models per category from the
subset, in which 80 models are used for training the CNN model
and the rest for testing the retrieval performance.

For comparison, we collect all the retrieval results pub-
licly available. The chosen methods are (Spherical Harmonic)
SPH [58], Light Field descriptor (LFD) [15], PANORAMA [11],
3D ShapeNet [9], DeepPano [33] and MVCNN [34]. As
Table I shows, GIFT outperforms all the state-of-the-art methods
remarkably on both evaluation metrics. We also present the per-
formances of two baseline methods, i.e., feature L5 or L; with
exact Hausdorff matching. As can be seen, L7 achieves a better
performance than L5, and GIFT leads to a significant improve-
ment over L7 of 5.82% in AUC, 5.31% in MAP on ModelNet40
dataset, and 3.32% in AUC, 3.07% in MAP on ModelNet10
dataset. Fig. 5 compares the precision-recall curves. It demon-
strates again the discriminative power of the proposed search
engine in 3D shape retrieval.

ModelNet also defines two 3D shape classification tracks,
where classifiers learned in a supervised way can be used.
Although GIFT is initially developed for real-time retrieval,
GIFT can be also applied to 3D shape classification with some
modifications. We follow the default parameter setup as
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TABLE II
COMPARISON OF CLASSIFICATION ACCURACY ON MODELNET40
DATASET AND MODELNET10 DATASET

Methods ModelNet40 ModelNet10
SPH [58] 68.23% 79.79%
LFD [15] 75.47% 79.87%
ShapeNets [9] 77.32% 83.54%
DeepPano [33] 82.54% 88.66%
Voxnet [60] 83.00% 92.00%
3D-GAN [61] 83.30% 91.00%
MVCNN [34] 90.10% -
Pairwise [59] 90.70 % 92.40 %
L 89.50% 91.50%
Ly 87.38% 91.50%

introduced before, except that re-ranking stage is not used since
it is not proper to deal with supervised classification. Instead,
we utilize a linear SVM classifier learned on training shapes to
predict the labels of test shapes.

The quantitative comparison of classification accuracy is
given in Table II. As the table presents, the best performance
is achieved by Pairwise [59], which is 90.70% on ModelNet40
dataset and 92.40% on ModelNet10 dataset, respectively. GIFT
also achieves competitive performances with Pairwise [59] on
both datasets. The confusion matrices generated by our system
on ModelNet4(0 dataset and ModelNet10 dataset are given in
Fig. 6.

B. SHRECI4LSGTB

As the most authoritative 3D retrieval competition held each
year, SHape REtrieval Contest (SHREC) pays much atten-
tion to the development of scalable algorithms gradually. Es-
pecially in recent years, several large scale tracks, such as
SHRECI4LSGTB [1], are organized to test the scalability of
algorithms. However, most algorithms that the participants sub-
mit are of high time complexity, and cannot be applied when
the dataset becomes larger (millions or more). Here we choose
SHREC14LSGTB dataset for a comprehensive evaluation. This
dataset contains 8,987 3D models classified into 171 classes, and
each 3D shape is taken in turn as the query. As for the feature
extractor, we collected 54,728 unrelated models from Model-
Net [9] divided into 461 categories to train a CNN model.

To keep the comparison fair, we choose two types of results
from the survey paper [1] to present in Table III. The first type
consists of the top-5 best-performing methods on retrieval ac-
curacy, including PANORAMA [11], DBSVC, MR-BF-DSIFT,
MR-DISIFT and LCDR-DBSVC. The second type is the most
efficient one, i.e., ZFDR [46].

As can be seen from the table, excluding GIFT, the best
performance is achieved by LCDR-DBSVC. However, it
requires 668.6 s to return the retrieval results per query, which
means that 69 days are needed to finish the query task on the
whole dataset. The reason behind such a high complexity lies
in two aspects: 1) its visual feature is 270K dimensional, which
is time-consuming to compute, store and compare; 2) it adopts
locally constrained diffusion process (LCDP) [24] for
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re-ranking, while it is known that LCDP is an iterative
graph-based algorithm of high time complexity. As for ZFDR,
its average query time is shortened to 1.77 s by computing
parallel on 12 cores. Unfortunately, ZFDR achieves much less
accurate retrieval performance, and its FT is 13% smaller than
LCDR-DBSVC. In summary, a conclusion can be drawn that
no method can achieve a good enough performance at a low
time complexity.

By contrast, GIFT outperforms all these methods and sets a
new state-of-the-art performance on this challenging competi-
tion. More importantly, GIFT can provide the retrieval results
within 63.14 ms, which is 4 orders of magnitude faster than
LCDR-DBSVC. Meanwhile, the two baseline methods Ls; and
L~ incur heavy query cost due to the usage of exact Hausdorff
matching, which testifies the advantage of the proposed F-IF.

We also compare the results of GIFT to other recent
algorithms, Two Layer Coding (TLC) [32] and Covariance [31].
TLC reports NN 0.879, FT 0.456 and ST 0.585. Tabia et al. ex-
tends the covariance descriptor [30] to its spatially-sensitive
version, and report NN 0.775, FT 0.460 and ST 0.501. Those
results are still inferior to GIFT.

C. ShapeNet Core55

ShapeNet Core55 [3] from SHape REtrieval Contest
(SHREC) 2016 is the latest competition track about the scal-
ability of 3D shape retrieval. It consists of 51,190 3D shapes
categorized into 55 categories and 204 sub-categories. Each
shape is assigned to a category label indicating a coarse divi-
sion, and a sub-category label indicating a fine division. To make
the supervised training possible, 70% (35,765) shapes serve as
training data, and 10% (5,159) shapes serve as validation data.
The rest 20% (10,266) shapes are testing data. All the metadata
has two versions. On the “normal” dataset, all the shapes are
upright and front orientated. On the “perturbed” dataset, all the
shapes are randomly rotated.

Since each shape has two groundtruth labels, the competi-
tion organizers also define a modified version of normalized
discounted cumulative gain (NDCG) for evaluation. Specially,
NDCG defined here uses the following graded relevance: 3 for
perfect category and subcategory match in query and returned
shape, 2 for category and subcategory both being same as the
category, 1 for correct category but a sibling subcategory, and
0 for no match. Meanwhile, since the number of shapes in dif-
ferent categories is not the same, all the used evaluation metrics
(MAP, F-measure and NDCG) will have two versions. Macro-
averaged version is used to give an unweighted average over
the entire dataset. Micro-averaged version is used to adjust for
model category sizes giving a representative performance metric
averaged across categories. To ensure a straightforward compar-
ison, the arithmetic mean of macro version and micro version is
also used.

Table IV presents the performance comparison on the normal
dataset, and Table V presents the performance comparison on the
perturbed dataset. As the two tables show, our method wins the
2nd place on the normal dataset and st place on the perturbed
dataset.
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Fig. 6.

TABLE III
PERFORMANCE COMPARISON ON SHREC14LSGTB

Methods Accuracy Query time
NN FT ST

ZFDR 0.879  0.398  0.535 1.77 s
PANORAMA 0.859 0436  0.560 370.2's
DBSVC 0.868  0.438  0.563 62.66 s
MR-BF-DSIFT ~ 0.845 0455  0.567 65.17 s
MR-DISIFT 0.856  0.465 0.578 131.04 s
LCDR-DBSVC  0.864  0.528  0.661 668.6 s
Ls 0.879 0460  0.592 2273 s
Ly 0.884  0.507  0.642 4825
GIFT 0.889  0.567  0.689 63.14 ms

D. Generic 3D Retrieval

Following [30], [31], we select three popular datasets
for a generic evaluation, including PSB dataset [57], WM-
SHRECO07 [55] and McGill dataset [56]. Among them, PSB
dataset is probably the first widely-used generic shape bench-
mark, and it consists of 907 polygonal models divided into
92 categories. WM-SHRECO07 contains 400 watertight models
evenly distributed in 20 classes, and is a representative compe-
tition held by SHREC community. McGill dataset focuses on
non-rigid analysis, and contains 255 articulated objects clas-
sified into 10 classes. We train CNN on an independent TSB
dataset [63], and then use the trained CNN to extract view fea-
tures for the shapes on all the three testing datasets.

In Table VI, a comprehensive comparison between GIFT
and various state-of-the-art methods is presented, including
LFD [15], the curve-based method of Tabia et al. [64], DE-
SIRE descriptor [27], total Bregman Divergences (tBD) [65],
Covariance descriptor [30], the Hybrid of 2D and 3D descrip-
tor [44], Two Layer Coding (TLC) [32] and PANORAMA [11].
As can be seen, GIFT exhibits encouraging discriminative abil-
ity and achieves state-of-the-art performances consistently in all
the three evaluation metrics.

E. Execution Time

In addition to state-of-the-art performances on several
datasets and competitions, the most important property of GIFT
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Confusion matrices of GIFT on (a), (b) ModelNet40 dataset and (c), (d) Modelnet10 dataset. The features used are (a), (c) L5 and (b), (d) L7, respectively.

is the “real-time” performance with the potential of handling
large scale shape corpora. In Table VII, we give a deeper anal-
ysis of the time cost. The off-line operations mainly include
projection rendering and feature extraction for database shapes,
training CNN, and building two inverted files. As the table
shows, the time cost of off-line operations varies significantly
for different datasets. Among them, the most time-consuming
operation is training CNN, followed by building the first in-
verted file with k-means. However, the average query time on
different datasets can be controlled within one second, even for
the biggest SHREC14LSGTB dataset.

F. Qualitative Evaluation

Typical retrieval results on PSB dataset are presented in Fig. 7.
Three query shapes are used. For each query, we present the
ranking lists of the baselines Lz and L7 in the first two rows,
and those of GIFT in the last row.

First, we observe that although L yields better overall per-
formances than Lj as the previous experiments show, it is not
the case when we consider an individual query shape. For in-
stance, L is more discriminative for the query shape “flying
saucer”. Second, some works (e.g., [67]) suggest that middle
level (e.g., L) activations are more suitable to capture low-level
patterns, while high level (e.g., L7) activations carry more infor-
mation about semantic attributes. For example, when L; is used
for indexing the “bird” query, it tends to return “airplanes”, since
both birds and airplanes have similar wings. Therefore, one can
clearly find the complementary nature between L; and Ly, and
the feature fusion mechanism in GIFT makes full use of such
complementarity to produce more reliable retrieval results.

At last, we also illustrate a case (the query is “bench seat”),
where both L5 and L7 lead to unsatisfactory results. Both of
them return many false positives from dining chair or desk
chair, two sibling sub-categories of bench seat. In this case, the
context information seems to be unreliable for context-based
re-ranking. However, we also observe the robustness of the re-
ranking component. This is because two shapes from the same
category are expected to have more common neighbors, but the
neighbors themselves do not necessarily come from the category
of the query shape. Even if those neighbors are false positives,
they can still be helpful in describing the contextual distribution
of the query shape to a certain extent.
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TABLE IV
PERFORMANCE COMPARISON ON SHAPENET CORESS NORMAL DATASET

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 19, NO. 6, JUNE 2017

Methods Micro Macro Micro + Macro
F-measure MAP NDCG F-measure MAP NDCG F-measure MAP NDCG
Tatsuma et al. [62] 0.472 0.728 0.875 0.203 0.596 0.806 0.338 0.662 0.841
Wang et al. 0.391 0.823 0.886 0.286 0.661 0.820 0.338 0.742 0.853
Li et al. 0.582 0.829 0.904 0.201 0.711 0.846 0.392 0.770 0.875
MVCNN [34] 0.764 0.873 0.899 0.575 0.817 0.880 0.669 0.845 0.890
GIFT 0.689 0.825 0.896 0.454 0.740 0.850 0.572 0.783 0.873
TABLE V
PERFORMANCE COMPARISON ON SHAPENET CORESS PERTURBED DATASET
Methods Micro Macro Micro + Macro
F-measure MAP NDCG F-measure MAP NDCG F-measure MAP NDCG
Tatsuma et al. [62] 0413 0.638 0.838 0.166 0.493 0.743 0.290 0.566 0.791
Wang et al. 0.246 0.600 0.776 0.163 0.478 0.695 0.205 0.539 0.736
Li et al. 0.534 0.749 0.865 0.182 0.579 0.767 0.358 0.664 0.816
MVCNN [34] 0.612 0.734 0.843 0416 0.662 0.793 0.514 0.698 0.818
GIFT 0.661 0.811 0.889 0.423 0.730 0.843 0.542 0.770 0.866
TABLE VI

PERFORMANCE COMPARISON ON PSB DATASET, WM-SHREC07 COMPETITION, AND MCGILL DATASET

Methods PSB dataset WM-SHRECO07 competition McGill dataset

NN FT ST NN FT ST NN FT ST
LFD [15] 0.657 0.380 0.487 0923  0.526 0.662 - - -
Tabia et al. [64] - - - 0.853  0.527 0.639 - - -
DESIRE [27] 0.665 0403 0512 0917 0.535 0.673 - - -
tBD [65] 0.723 - - - - - - - -
Covariance [30] - - - 0.930  0.623 0.737 0977 0732 0818
2D/3D Hybrid [44] 0.742 0473  0.606 0955 0.642 0.773 0.925  0.557  0.698
PANORAMA [11] 0.753 0479  0.603 0957  0.673 0.784 0929 0.589  0.732
Shape Vocabulary [66] 0.717 0.484 0.609 - - - — — -
PANORAMA +LRF [11] 0.752 0531 0.659 0957 0.743 0.839 0910 0.693 0.812
TLC [32] 0.763  0.562  0.705 0988  0.831 0.935 0.980  0.807  0.933
Ly 0.849  0.588  0.721 0980  0.777 0.877 0.984  0.747  0.881
Lo 0.837 0.653 0.784 0980  0.805 0.898 0980 0.763  0.897
GIFT 0849 0.712 0.830 0.990 0.949 0.990 0984 0.905 0973

TABLE VII

TIME COST ANALYSIS OF GIFT

Datasets Off-line On-line Indexing
ModelNet40 ~0.7h 27.02 ms
ModelNet10 ~0.3h 10.25 ms
SHRECI4LSGTB ~8.5h 63.14 ms
PSB 16.25 ms
WMSHREC07 ~1.8h 16.05 ms
McGill 9.38 ms

G. Combination With Handcrafted Features

As illustrated above, one can easily observe the complemen-
tary nature between activations from convolutional layer L; and
fully-connected layer L;. This phenomenon also inspires us to

fuse more complementary features to enable more accurate re-
trieval. In this subsection, we consider a fusion of GIFT and
handcrafted features for an additional evaluation.

Following the pipeline in [16], we extract SIFT [21] descrip-
tors on Hessian-affine interest points of depth projections. Then
for each shape, we put the SIFT descriptors of all its projections
into one bag, and encode them via Vector of Locally Aggre-
gated Descriptors (VLAD) [68], [69] with improvements Root-
SIFT [70] and power normalization [71]. The codebook size
is 1,024. The Euclidean distance between two VLADS is es-
sentially based on the matching kernel [72] between two sets
of SIFT descriptors. Hence, compared with deep features used
in the original GIFT, VLAD representation is more robust to
rotation, non-rigid deformation, part missing, etc.

In Table VIII, we present the performances of VLAD, the
original GIFT [26] and a fusion of them through Neighbor
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L7 in the first two rows. The results of GIFT are in the last row.

TABLE VIII
PERFORMANCES OF COMBINING GIFT WITH HANDCRAFTED FEATURES

Dataset Metric VLAD GIFT [26]  GIFT+VLAD
ModelNet40 AUC 55.13% 83.10% 85.49%
MAP 54.52% 81.94% 84.54%
ModelNet10 AUC 62.50% 92.35% 93.44%
MAP 61.57% 91.12% 92.59%
SHRECI4LSGTB NN 0.873 0.889 0.874
FT 0.435 0.567 0.566
ST 0.563 0.689 0.698
PSB NN 0.804 0.849 0.849
FT 0.575 0.712 0.723
ST 0.715 0.830 0.834
WM-SHRECO07 NN 0.978 0.990 0.988
FT 0.801 0.949 0.960
ST 0.906 0.990 0.994
McGill NN 0.992 0.984 0.984
FT 0.789 0.905 0.932
ST 0.922 0.973 0.984

Multi-augmentation defined in (15). As can be seen from the
table, the retrieval performances are further improved on all
the datasets, which testifies the complementarity between hand-
crafted features and deep-learned features. We draw the reader’s
attention that the distance calculation between VLADs is of

Query shapes are in green boxes, and the returned false positives are in red boxes. For each query, we present the ranking lists of the baselines L5 and

great computational cost since VLAD representation is gener-
ally compact and high-dimensional (128 x 1024 in our imple-
mentation). Though this problem can be solved using approx-
imation nearest neighbor (ANN) search (e.g., [73]), most of
those techniques lead to considerable performance drop in real
retrieval system. Therefore, we omit those techniques in this
experiment.

H. Parameter Discussion

All the discussions are conducted on PSB dataset, if not spec-
ified otherwise. Improvements over Baseline. In Table IX, a
thorough discussion is given about the influence of various
components of GIFT. We can observe a consistent performance
boost by those improvements. The performance jumps a lot es-
pecially when the re-ranking component is embedded. A linear
combination of Ly and L7 with equal weights only achieves FT
0.657, which demonstrates that GIFT provides a better way for
multiple feature fusion in the re-ranking level. One should also
note a slight performance decrease when approximate Hausdorff
matching with F-IF is used compared with its exact version.
However, as discussed below, the embedding with inverted file
does not necessarily result in a poorer performance, but shortens
the query time significantly.

Discussion on F-IF: In Fig. 8, we plot the retrieval perfor-
mance and the average query time using feature L7, as the
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TABLE IX
PERFORMANCE IMPROVEMENTS BROUGHT BY VARIOUS COMPONENTS IN GIFT
OVER BASELINE. IN COLUMN “HAUSDORFF”, \/ DENOTES APPROXIMATE
HAUSDORFF MATCHING IN (7), WHILE X DENOTES EXACT MATCHING IN (5).
COLUMN “a” PRESENTS THE VALUE OF EXPONENT IN (12). COLUMN
“NA” DESCRIBES THE PROCEDURE OF NEIGHBOR AUGMENTATION
IN SECTION III-D.1: /1S ASSOCIATED WITH (14) AND X IS
ASSOCIATED WITH (13). THE BLANKS MEAN THAT THIS
IMPROVEMENT IS NOT USED

Feature Hausdorff Re-ranking First Tier
@ NA
L x 0.588
L7 X 0.653
L5+ L~ 0.657
Ls + Ly X 1 0.688
Ls + L7 X 0.5 0.692
Ls + Lo X 0.5 X 0.710
Ly + Ly X 0.5 Vv 0.717
Ly + Lt v 0.5 i 0.712
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Fig. 8. Performance difference between Hausdorff matching and its ap-

proximate version in terms of (a) retrieval accuracy and (b) average query
time.

number of entries used in the first inverted file changes. As
Fig. 8(a) shows, the retrieval performance generally decreases
with more entries, and multiple assignment can boost the re-
trieval performance significantly. However, it should be ad-
dressed that a better approximation to (5) using fewer entries
(decreasing K) or larger multiple assignments (increasing MA)
does not necessarily imply a better retrieval performance. For
example, when K = 256 and MA= 2, the performance of ap-
proximate Hausdorff matching using inverted file surpasses the
baseline using exact Hausdorff matching. The reason for this
“abnormal” observation is that the principle of inverted file here
is to reject those view matching operations that lead to smaller
similarities, and sometimes they are noisy and false matching
pairs which can be harmful to the retrieval performance.

As can be seen from Fig. 8(b), the average query time is higher
at smaller K and larger MA, since the two cases both increase
the number of candidate matchings in each entry. The baseline
query time using exact Hausdorff matching is 0.69 s, which is
at least one order of magnitude larger than the approximate one.
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Fig. 9. Influence of neighbor set sizes k1 and k2 used in the second

inverted file.

TABLE X
PERFORMANCE COMPARISON BETWEEN FINETUNING, DENOTED
BY \/ , AND TRAINING FROM SCRATCH, DENOTED BY X

Methods NN FT ST

v x v x v x

Ls 0.849  0.642 0588 0370 0.721 0473
Ly 0.837 0.628  0.653 0380 0.784  0.512
GIFT 0.849  0.622 0712 0427 0.830 0.563

Discussion on S-I1F: Two parameters, k; and ko, are involved
in the second inverted file, which are determined empirically.
We plot the influence of them in Fig. 9. As can be drawn from the
figure, when k; increases, the retrieval performance increases
at first. Since noise contextual information can be included at
a larger k;, we can observe the performance decreases after
k1 > 10. Meanwhile, neighbor augmentation can boost the per-
formance further. For example, the best performance is achieved
when ko = 4. However, when ko = 5, the performance tends to
decrease. One may find that the optimal value of ks is much
smaller than that of k;. The reason for this is that ko defines the
size of the second order neighbor, which is more likely to return
noise context compared with the first order neighbor defined
by ]fl .

Finetuning or Not: By default, GIFT finetunes the CNN model
which is pre-trained on natural images from ImageNet. In this
experiment, we evaluate whether training the neural network
from scratch will affect the retrieval performance. As Table X
shows, finetuning achieves much better performances than train-
ing from scratch. It suggests that although depth images have
very different appearances from natural images, finetuning the
pretrained model is a better choice to learn more discriminative
filters for them.

Transferring Capacity: In the phase of feature extracting,
the proposed GIFT needs labeled shapes to train the network.
The testing categories usually appear in the training categories,
so that the category-specific cues can be captured by the fea-
ture extractor. In this experiment, we investigate the transfer-
ring capacity of GIFT, that is, the testing categories have non-
overlap with the training categories. Therefore, we construct a
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TABLE XI
PERFORMANCES OF GIFT WHEN VARYING
THE TRAINING AND TESTING SOURCES

Training Testing AUC MAP

ModelNet40 ~ ModelNet40  83.10%  81.94%
ModelNetl0  ModelNet40  64.73%  63.65%
ModelNetl0  ModeINet30  64.10%  62.94%

new dataset called ModelNet30, which is comprised of the 30
categories that appear in ModelNet40 but do not appear in Mod-
elNet10. By doing so, when we use neural network trained on
ModelNet10 to test the retrieval performance on ModelNet30,
all the queries are outside the training categories.

Table XI presents the performances of GIFT with different
training and testing sources. As can be drawn, when the train-
ing source is changed from ModelNet40 to ModelNet10, the
retrieval performance on ModelNet40 decreases by around 19
percent. When testing on the new constructed ModelNet30, the
performance slightly decreases further. Nevertheless, those per-
formances of GIFT are still higher than SPH [58], LFD [15],
PANORAMA [11] and ShapeNets [9] presented in Table I,
which testifies the generalization ability of GIFT.

V. FUTURE WORK

There are still many interesting issues that can be studied

further, such as:

1) Rotation invariance: In the proposed method, the used
shape descriptor is not completely invariant to rotation.
Learning rotation-invariant representation for 3D shape
has been a challenging topic for a long time. Some clas-
sic algorithms (e.g., [11]) leverage PCA techniques as
a preprocessing step before feature extraction. However,
as suggested above, PCA is not always stable. Recent
trends [74] show that the robustness of image representa-
tions to common geometric transformations (e.g., trans-
lation, scale, rotation, warping) can be learned in deep
learning framework. By analogy, it is promising to learn
the transformations of 3D shapes in a neural network, so
that the preprocessing of pose normalization and feature
extraction can be done simultaneously.

2) Query by sketch: Note that the query in the proposed sys-
tem is 3D shape. SHREC community also starts to attach
importance to large scale sketch-based 3D shape retrieval,
which aims to retrieve relevant 3D shapes using sketch as
input. To facilitate this research area, several competition
tracks [75], [76] are organized. The competition results
demonstrate that the scalability of sketch-based 3D shape
retrieval is also badly required.

3) Spatial topology: Human perceptions of 3D shapes de-
pend on 2D projections. These projections actually con-
stitute a spatial topology around the 3D shape. It can be
expected that in the multi-view matching procedure, the
relative spatial arrangement of these projections is helpful
to establish a more robust correspondence between two
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shapes. So, how to efficiently utilize the spatial informa-
tion can be investigated in large scale 3D shape retrieval.

VI. CONCLUSION

In the past years, 3D shape retrieval was evaluated with only
small numbers of shapes. In this sense, the problem of 3D shape
retrieval has stagnated for a long time. Only recently, shape
community starts to pay more attention to the scalable retrieval
issue gradually. However, as suggested in [1], most classical
methods encounter severe obstacles when dealing with larger
databases.

In this paper, we focus on the scalability of 3D shape re-
trieval algorithms, and build a well-designed 3D shape search
engine called GIFT. In our retrieval system, GPU is utilized to
accelerate the speed of projection rendering and view feature
extraction, and two inverted files are embedded to enable real-
time multi-view matching and re-ranking. As a result, the aver-
age query time is controlled within one second, which clearly
demonstrates the potential of GIFT for large scale 3D shape
retrieval. What is more impressive is that while preserving the
high time efficiency, GIFT outperforms state-of-the-art methods
in retrieval accuracy by a large margin. Therefore, we view the
proposed search engine as a promising step towards larger 3D
shape corpora.
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