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Abstract—View-based 3D shape retrieval is a popular branch in 3D shape analysis owing to the high discriminative property of 2D

views. However, many previous works do not scale up to large 3D shape databases. We propose a two layer coding (TLC) framework

to conduct shape matching much more efficiently. The first layer coding is applied to pairs of views represented as depth images. The

spatial relationship of each view pair is captured with so-called eigen-angle, which is the planar angle between the two views measured

at the center of the 3D shape. Prior to the second layer coding, the view pairs are divided into subsets according to their eigen-angles.

Consequently, view pairs that differ significantly in their eigen-angles are encoded with different codewords, which implies that spatial

arrangement of views is preserved in the second layer coding. The final feature vector of a 3D shape is the concatenation of all the

encoded features from different subsets, which is used for efficient indexing directly. TLC is not limited to encode the local features from

2D views, but can be also applied to encoding 3D features. Exhaustive experimental results confirm that TLC achieves state-of-the-art

performance in both retrieval accuracy and efficiency.

Index Terms—3D shape matching, shape retrieval, bag of features, large scale, two layer coding
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1 INTRODUCTION

STEPPING into the era of big data, there are many large 3D-
collections in digital format, being accessed with a com-

mon PC or mobile terminals on the Internet. How to effi-
ciently and effectively perform 3D shape matching has
become a crucial issue due to many applications such as 3D
model retrieval and categorization, 3D reconstruction,
CAD, biological analysis, medical imaging, virtual reality
and computer game design.

One of the most important challenges in shape matching
is to obtain a good shape (dis)similarity measure for
comparing a pair of shape instances. Especially for 3D shape
matching, both retrieval accuracy and computational effi-
ciency should be urgently improved due to the increasing
number of 3D objects on the internet.

Owing to the recent success of image representation and
analysis in the bag-of-features (BoF) [1], [2] framework, cod-
ing-based methods have attracted much attention in shape
analysis community. Since the coding framework can effi-
ciently provide a set-to-set correspondence of local shape
features in 3D objects, it accelerates 3D shape matching
while preserving the discriminative power of the features at
the same time. However, unlike image representation, 3D
shape, as a high level feature, can not be fully depicted with
only local appearance variations under the BoF framework,
since the configuration (i.e. the spatial arrangement) of local

parts is more or less lost in the current coding approaches
for 3D shape matching.

In this paper, we propose a novel coding framework for
constructing a compact and robust shape representation for
3D shape matching. The proposed representation is
obtained based on a set of 2D views in the format of depth
buffer rendered from each 3D object. Our method includes
two main stages. First, SIFT [3] features collected from pairs
of different 2D views are encoded into a single vector with
Vector of Locally Aggregated Descriptors (VLAD) [4]. The
single vector can be considered as a compact shape feature
that contains the shape information of a pair of projections
from a given 3Dmodel. In the second stage, we adopt vector
quantization (VQ) to encode all the features describing view
pairs into a single feature vector representing the whole 3D
object. Since each 3D model is then represented by a single
feature vector, 3D shape matching can be simply accom-
plished via vector comparison, which is particularly effi-
cient for retrieval and ranking 3D objects in a large
database. A brief pipeline of the proposed coding method is
given in Fig. 1.

Different from previous view-based 3D shape matching
approaches that treat 2D views independently, the pro-
posed idea of combining a pair of views is motivated by an
obvious phenomenon: 3D objects can be distinguished more
easily based on two different views than a single view. As
illustrated in Fig. 2a, humans may not be able to recognize
some 3D objects given just one single view. However, when
two different views are presented together, the recognition
becomes a much simpler task, e.g., see Fig 2b. In other
words, 3D objects from different categories may have simi-
lar single views, but they are less likely to have two
completely similar view pairs. Another advantage of view
pair is the fact that it generates more shape signatures than
using single views, which is particularly good for coding
methods. For example, given Nv views, the number of
combinations of them is Nv � ðNv � 1Þ=2, and that of
permutations isNv � ðNv � 1Þ.
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Even though the proposed view-pair representation con-
tains more information than the representation of a single
view, encoding such features directly is not able to fully
describe the spatial arrangement of all the views of a 3D
object. Assume that all views of a 3D object are captured on
the surface of the unit sphere, then the angle between any
two views (treated as projections from the centroid) is
known. We utilize this fact to divide view pairs into groups
so that any two view pairs in the same group have similar
angles. Then the second layer coding is performed for each
group, and finally the encoded features from all the groups
are concatenated to a single vector. This approach is moti-
vated by the fact that similar objects have similar view pairs
that have similar angle, e.g., see Fig. 3. With the above strat-
egy, the spatial relationship of local features (view pairs) is
to a large extent preserved during the coding.

To summarize, the proposed method has several merits
in comparison with previous 3D shape matching algo-
rithms. First, since the angles between two views of each
view pair are invariant to object pose, and no pose normali-
zation with respect to orientation of 3D objects is required.
Second, the representation of view pairs is stable and
discriminative, since it contains more information than
single view, and the angle of a view pair naturally pre-
serves the global spatial configuration of local features in
the coding scheme. Third, the proposed two layer coding
(TLC) strategy provides a compact representation for
efficient shape matching, which is quite important in
large-scale 3D shape retrieval scenarios. Fourth, the fea-
ture sampling strategy based on view pair provides a
practical description of spatial information of 3D shapes
that is preserved during coding. Fifth, the proposed cod-
ing framework is not only limited to local features from
2D projections, but also can be directly adopted to depict
the spatial configuration of 3D shape signatures on the

surface. Extensive experiments on the existing popular
3D shape benchmarks demonstrate that the proposed
method achieves state-of-the-art retrieval performance
while maintaining high efficiency.

The remainder of this paper is organized as follows. In
Section 2, we introduce some related work briefly. The moti-
vation and definition of two layer coding are given in
Section 3. In Section 4, experimental results on five
benchmark datasets are presented and analyzed. Finally,
conclusions are given in Section 5.

2 RELATED WORK

Generally, 3D shape matching methods can be coarsely
divided into two categories: model-based methods (e.g. [5])
and view-based methods (e.g. [6], [7]). For model-based
methods, some geometric features are often extracted first,
then the correspondence between such features is estab-
lished by minimizing the matching cost. In the early years,
model-based methods have been the main stream, but, how
to efficiently perform meaningful feature extraction and
how to establish pairwise feature correspondence are the
biggest and unsolved obstacles for large-scale 3D model
retrieval. View-based methods represent 3D models with a
group of 2D projections, which received growing interest in
recent years due to their computational efficiency. Besides,
fusing multiple complementary features to boost the
retrieval accuracy is often adopted, recently. In this paper,
we call the approaches on feature fusion as hybrid methods.

Fig. 1. The pipeline of the proposed coding framework.

Fig. 2. The difference in the discriminative power between a single view
and a view pair. (a) Some examples of unrecognized views. (b) Adding a
second view significantly increases the recognition likelihood. This
motives our usage of view pairs in encoding 3D shapes.

Fig. 3. Two 3D models from the category of “Back Doors” and “Rectangular Housings” from the ESB dataset. As shown in the second column, they
have a similar view, but their view pairs that form the same angles are quite different.

2362 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 37, NO. 12, DECEMBER 2015



2.1 Model-Based Methods

The model-based methods usually extract the shape
descriptors directly from 3D models with some key point
detection/sampling techniques [5], [8], and the (dis)similar-
ity between two 3D shapes is measured by a certain metric
in the spatial domain or in the spectral domain. In [9], Shape
Histogram descriptor is proposed to act as an intuitive and
powerful approach for modeling similarity for solid objects.
For example, SHELLS is defined as a histogram of distances
from the center of mass to points on the surface. Osada
et al. [10] represent a signature of a 3D object as a shape dis-
tribution sampled from a shape function to measure global
geometric properties of an object, such as D2 function
defined as a histogram of distances between pairs of points
on the 3D surface. An enhanced shape function, called the
angle distance histogram for inconsistently oriented meshes
is proposed in [11]. Spin Images are used in [12] to
match surfaces represented as surface meshes. Zaharia and
Preteux [13] propose a descriptor capturing the distribution
of a shape index over the entire mesh, where a shape index
is defined as the angular coordinate of a polar representa-
tion of the principal curvature vector. Concrete radialized
spherical projection (CRSP) [14] descriptor is proposed to
describe a 3D model using a volumetric spherical function,
and both continuous principal component analysis (CPCA)
and normals principal component analysis (NPCA) are
used to align the model. Curve analysis is conducted in the
3D surfaces [15] to define a global distance between shapes.
In [16], a novel Covariance Descriptor, which uses the
covariance of the features instead of the features them-
selves, is used to perform shape matching. Bronstein
et al. [17] use multi-scale diffusion heat kernels as geometric
words to construct shape descriptors, and spatially close
geometric words are considered to create spatially-sensitive
bags of features. Partial matching of surfaces represented
by triangular meshes is exploited in [18], [19], where local
surface descriptors are designed to encode regions of the
surface efficiently. Another interesting branch of model-
based approaches focuses on establishing the correspon-
dence between the approximate skeletons or medial axes of
3D shapes, which is extremely important for articulation
changes of non-rigid shapes [20], [21], [22], [23], [24].
Besides skeleton-based representations, some descriptors
extracted on 3D surface [25], [26], [27] are popular as well
for handling non-rigid deformations.

Model-based methods can often provide a faithful part
correspondence of 3D models, which is quite useful in 3D
modeling. However, the computational cost of 3D shape
signatures and correspondence matching makes them diffi-
cult for 3D shape retrieval in large scale. Though the pro-
posed view pair representations are computed based on 2D
projections, they can also be considered as a set of 3D shape
signatures collected from a 3D model.

2.2 View-Based Methods

View-based methods have been investigated intensively as
well in recent years, and it has been demonstrated in [28],
[29] that view-based methods achieve competitive overall
retrieval performance, due to the existence of the highly dis-
criminative views. Existing view-based methods usually
align a given 3D shape to its principal directions with PCA,

and project it to several 2D views, which are mostly contours
or depth-buffers. Then informative and discriminative fea-
tures are extracted directly, or learned indirectly, to repre-
sent these views. Finally a many-to-manymatching strategy,
such as the Hungarian method, Dynamic Programming,
Shortest Augmenting Path algorithm [30], is adopted to
build the correspondence between two sets of view features.

Based on the assumption that if two 3D shapes are simi-
lar, they also look similar from all viewing angles, Chen
et al. [31] propose light field descriptor (LFD), which is com-
posed of Zernike moments and Fourier descriptors,
extracted from ten views given by the vertices of a dodeca-
hedron over a hemisphere. Vranic [32] design a hybrid
descriptor, which is formed using depth buffer images, sil-
houettes, and ray-extents of a polygonal mesh. Bag of Fea-
tures [1], [2] model, a classical framework widely used in
2D image representation, is applied to view-based 3D shape
analysis in [33] for the first time. In [34], [35], SIFT [3]
descriptors are extracted in the projected depth images, and
encoded to get a vector representation for each view. The
algorithm of Clock-Matching is subsequently investigated
to find the best correspondence between two sets of features
by considering all possible shape poses. Vectors of locally
aggregated tensors (VLAT) [36] are used to encode the
visual descriptors by aggregating their tensor products.
However, all visual descriptors are put into a single bag,
instead of maintaining a separate set of descriptors for each
view. Papadakis et al. [7] project a 3D shape, normalized by
PCA [14], [37], to the lateral surface of a cylinder, and obtain
a set of panoramic views represented by 2D Discrete Fourier
Transform and 2D discrete wavelet transform. In [38], com-
pact multi-view descriptor (CMVD) is proposed, in which
the comparison between 3D shapes is accomplished by the
feature matching between selected views using 2D features,
such as 2D Polar-Fourier Transform, 2D Zernike Moments,
and 2D Krawtchouk Moments.

Besides the aforementioned methods that focus on
designing robust descriptors for views, several researchers
attach more importance to multi-view matching through
some learning-based algorithms. Adaptive views clustering
(AVC) [39] is proposed to select discriminative views, and
the retrieval is performed with a novel Bayesian method.

2.3 Hybrid Methods

Hybrid BoW [40] fuses the feature obtained by bag-of-
words model without spatial information or a spatially-sen-
sitive descriptor. It achieves good performance on some
datasets. The complementarity of 2D and 3D features is
observed in [41], where a 2D/3D hybrid descriptor is pro-
posed that consists of 2D features based on depth buffers
and 3D features based on spherical harmonics.

Although the hybrid methods perform better in many
cases, their main disadvantage is lack of a way to deter-
mine the weights of different features in an unsuper-
vised manner, hence many previous algorithms set the
weight empirically.

3 TWO LAYER CODING

Given a query 3D shape with a set of 2D views, the goal of
view-based 3D shape retrieval system is to retrieve similar
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3D shapes from the database according to some measures
defined between two sets of views. The matching between
two sets is usually time-consuming. To address this prob-
lem, we propose an efficient framework for multi-view
matching by coding-based method together with the combi-
nation of the spatial arrangement of views. In this section,
we introduce the details of the proposed two layer coding.

3.1 Visual Feature Extraction

Prior to the extraction of visual descriptors, pose normaliza-
tion is conducted for each 3D shape. However, different
from previous algorithms that perform the normalization
for rotation invariance using principal component
analysis (such as CPCA [37], NPCA [14], we only normal-
ize the scale and translation of the 3D shape in our frame-
work to eliminate their negative influence on the
similarity measure between 3D shapes. Specifically, we
translate the center of the 3D shape to the origin of
the spherical coordinate system, and resize the maximum
polar distance of the points on the surface of shape to
unit length. Because our method is rotation-invariant, the
normalization for rotation is unnecessary.

For a 3D shape S, we create 2D projections (depth
images) from Nv view points, which are evenly spaced on
the unit sphere. The locations of these view points are deter-
mined by the two angles uel and uaz as illustrated in Fig. 4.
These projections constitute the view set VðSÞ ¼ fv1;
v2; . . . ; vNvg for the 3D shape S. Some exemplar 3D shapes

and their corresponding projections are presented in Fig. 5.
For each view vieð1 � i � NvÞ in VðSÞ, several interest
points are detected with HarrisLaplace [42] detectors,
around which a group of SIFT features [3] is extracted. The
collection of SIFT features for the 3D shape S is denoted by
XðSÞ ¼ fX1;X 2; . . . ;XNvg, with X i representing the SIFT
features extracted in vi.

3.2 Representation Based on View Pairs

Given the local SIFT features, many previous works [33],
[35], [36] encode them with some coding strategies to get a
feature vector for each view. Then a kind of many-to-many
matching procedure, such as clock-matching [35], is utilized
to measure the similarity between two 3D shapes. However,
it is known that performing pairwise matching between two
sets is time-consuming, which limits the usage of thesemeth-
ods in real-time applications. Furthermore, most of these
methods need to compute the principal axis of 3D objects
and align it, but the computed principal axis may not be sta-
ble in some cases. Some methods, such as VLAT [36], totally
ignore the location of the SIFT features, and put all SIFT fea-
tures from different views in a single bag. While it improves
efficiency, the retrieval performance is less accurate due to
loss of spatial correlation between views. In contrast, we pro-
pose a view-based 3D shape representation that is suitable
for large scale 3D shape retrieval and at the same time pre-
serves the spatial arrangement of views.

Given a set of views of a 3D shape, how do humans per-
ceive them? We list some views from Watertight Models
Track of SHREC2007 [43] in Fig. 2a. We observe that these
objects are hard to recognize with just a single view, unless
additional information is given. But if two views are com-
bined with each other, it is easy for us to distinguish the
objects as illustrated in Fig. 2b. For example, the one in
the top left corner is a view from the back of a plane, and
the one in the top right corner is a view from the bottom of a
bearing. As can be seen, two views are much more informa-
tive in visual concept than just one view. This example
inspires us to use view pairs instead of individual views to
represent a 3D shape.

Given a view pair pi;j which is composed of two single
views vi and vj, the problem is how to design a proper
descriptor fi;j ¼ Gðpi;jÞ according to a mapping function G.
Note that we have extracted two bags of visual descriptors
X i and X j for vi and vj, respectively. Coding-based methods

Fig. 4. The illustration of the projection. The two black dots represent two
view points. Each projected view is located by the angles uel and uaz. b is
the angle between the two projected views.

Fig. 5. Some typical 3D models from the McGill dataset (the first column) and their corresponding depth-buffer images. The darker parts in the projec-
tions are associated with higher values in depth.

2364 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 37, NO. 12, DECEMBER 2015



can be utilized to encode these visual descriptors to get the
vector representation for pi;j. In this paper, vector of aggre-
gated local descriptors [4] is adopted.

In fact, alterative ways, such as vector quantization and
Fisher Kernel [44], could also be utilized. But compared
with other coding strategies, VLAD has some good proper-
ties to encode the visual descriptors in the specific situation.
First, compared with VQ that usually uses an extremely
large codebook, VLAD often needs coarser clusters (typi-
cally 32 clusters in our experiments) to accumulate the
residual vectors. Hence some operations during the coding
procedure, such as NN search, are conducted in a smaller
feature space, which reduces the computation time. Second,
compared with FK, VLAD is a simplified version that is fast
to implement. Third, VLAD aggregates visual descriptors
based on the locality criterion in the codebook, and it can
preserve the information of codebook, which is beneficial
for our second layer coding.

We propose two ways to aggregate the SIFT descriptors,
i.e., a joint way and an individual way. The joint waymerges
two bags X i and X j into a single bag, and aggregates them
jointly, while the individual way considers the two bags sep-
arately, and encodes them individually. The two ways are
associated with two representations of the view pair, which
we call Joint-Pair (J-Pair) and Individual Pair (I-Pair). The
definitions of J-Pair and I-Pair are presented next.

3.2.1 J-Pair

Joint-Pair (J-Pair) does not distinguish which view a certain
SIFT descriptor belongs to. Two bags of local descriptors
from both views vi and vj are merged together simply to get
its corresponding bag pair

Yi;j ¼ X i

[
X j; (1)

where the number of visual descriptors in Yi;j is equal to the
sum of those in X i and X j.

Let B ¼ fb1; b2; . . . ; bKg be a codebook of SIFT descriptors
of size K learned off-line with the standard K-means [45]
algorithm. For the view pair pi;j, the response value of
VLAD for the k-th ð1 � k � KÞ quantization index is a sub-

vector fk
i;j, defined as the sum of the residual vector, i.e.,

the difference between the local descriptors and their
corresponding visual word:

fk
i;j ¼

X
y2Yi;j;qðyÞ¼bk

y� bk; (2)

where function qð:Þ returns the nearest visual word in the
codebook for the input feature. Let fi;j be the concatenation
of all the aggregated residuals:

fi;j ¼
�
f1
i;j f2

i;j . . . fKi;j
�
2 Rd�K; (3)

where d is the dimension of the local descriptor. The vector
representation fi;j for the view pair pi;j is then L2 normal-
ized. Since the order of the two views is not considered, i.e.,
Yi;j ¼ Yj;i, we have

GJðpi;jÞ ¼ GJðpj;iÞ: (4)

The view pair set of the given shape S is obtained by enu-
merating the combinations of all view pairs

PJðSÞ ¼ fpi;j j 1 � i < j � Nvg; (5)

and the corresponding J-Pair feature set is given by

F JðSÞ ¼ ffi;jjfi;j ¼ GJðpi;jÞ; pi;j 2 PðSÞg: (6)

Hence the number of view pairs defined by J-Pair is equal to
the combinations of two views, which means

jPJðSÞj ¼ jF JðSÞj ¼
Nv

2

� �
¼ Nv � ðNv � 1Þ

2
; (7)

where the function j:j calculates the set size.

3.2.2 I-Pair

Individual Pair (I-Pair) encodes the visual descriptors from
different views individually, i.e., we concatenate the
encoded features of two views to represent the view pair.

More specifically, the encoded feature fi 2 Rd�K for view
vi is computed by encoding the SIFT descriptors in X i using
VLAD. Then the I-Pair feature fi;j of the view pair pi;j is the
concatenation of fi and fj

fi;j ¼ ½fi; fj� 2 R2�d�K: (8)

In this case, the view pair pi;j is not the same as pj;i under the
representation of I-Pair as

GIðpi;jÞ 6¼ GIðpj;iÞ; (9)

for the I-Pair is sensitive to the order of the two views.
The view pair set described with I-Pair can be obtained

through enumerating the permutations of two views

PIðSÞ ¼ fpi;j j 1 � i; j � Nv; i 6¼ jg; (10)

and the corresponding I-Pair set F IðSÞ. For the shape S, the
number of view-pairs defined by I-Pair is equal to the per-
mutations of two views, which means

jPIðSÞj ¼ jF IðSÞj ¼
Nv

2

� �
¼ Nv � ðNv � 1Þ: (11)

For I-Pair description, other methods or some man-made
features, such as Zernike moments [46] are also suitable,
since it represents a view pair by just concatenating two fea-
tures of two views that make up the pair. On the contrary,
J-Pair can be only adopted with coding-based methods, as it
is generated by directly merging two bags of visual descrip-
tors from two views into a single bag. Consequently, J-Pair
is invariant to the order of views.

Encoding the visual descriptors to get an encoded feature
for a view pair is the first layer coding in our two layer
coding framework. Unlike many previous algorithms that
only encode a single view one by one, we consider the
collaborative representation of a view pair. In Section 3.3,
we present how we handle the second layer coding,
applied to both J-Pair and I-Pair, to get the final represen-
tation for the 3D shape with a novel angular division that
considers the spatial distribution of views and keeps our
method invariant to rotation.
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3.3 Coding with Angular Division

To simplify the notation, we remove the subscript “J” or “I”
in the mapping function G, the view pair set VðSÞ, and the
feature set FðSÞ in this section. All definitions next are
applied to both J-Pair and I-Pair.

After computing the encoded feature fi;j for each element
pi;j in the view pair set PðSÞ, the upcoming problem is how
to organize these encoded features to get a compact repre-
sentation for the whole 3D shape. A straightforward solu-
tion is to encode these features directly again via some
coding algorithms, such as vector quantization.

By using the codebook constructed by the standard
K-means clustering, vector quantization deems that two
view pairs generate a successful match, when they fall into
the same cluster. Therefore, they are assigned to a same
visual word in the coding procedure, and contribute equally
to the final representation of the 3D shape.

However, when vector quantization is applied directly,
the spatial relation of views is not considered. Note that all
views lie on the surface of the unit sphere. Let ~ui denote the
unit vector from the centroid to the view point where vi is
rendered. We define

bi;j ¼ arccos<~ui; ~uj> (12)

as the angle between vi and vj, which make up a view
pair pi;j. The illustration of the unit vectors , the angle b,
and the view points are presented in Fig 4. The angle is
an important attribute of a view pair, and we call it the
“eigen-angle” of a view pair. We assume that two shapes
are similar when the view pairs from each shape with
similar eigen-angles are also similar. Although it is pos-
sible that some shapes from different categories may
have similar views, the likelihood of having similar view
pairs with a similar eigen-angle is extremely small, as
illustrated in Fig. 3.

We uniformly divide ½0;p�, the range of eigen-angles, into
L bins fU1; U2; . . . ; ULg, where Ul is defined as

Ul ¼ bj l� 1

L p � b � l

Lp

� 	
: (13)

A binary indicator vector Ii;j ¼ fI1i;j; I2i;j; . . . ; ILi;jg 2 RL

defined as

Ili;j ¼ Hðpi;jÞ ¼
1; if bi;j 2 Ul;
0; otherwise;

�
(14)

is used to determine which eigen-angle bin the view pair pi;j
belongs to. Each view pair pi;j is represented by a tuple
ðfi;j; Ii;jÞ, where Ii;j can be interpreted as a spatial descrip-
tion of feature fi;j. The matching between two view pairs
can be valid, only if they look similar in the feature space
and their eigen-angles lie in the same bin.

The eigen-angle bi;j reveals the spatial relationship
between vi and vj, and such a relative spatial description
is rotation-invariant, i.e. , no matter how we rotate the 3D
shape S, the eigen-angle between two views remains
unchanged. Many previous methods, like [7], [35],
achieve the rotation invariance by applying PCA-based
technique and aligning the 3D shape to the principal
axis. However, different PCA-based techniques lead to

different canonical coordinate frames of a 3D shape.
Moreover, it is usually unstable to define the principal
axis for many shapes like a ball.

3.3.1 Codebook Learning

We apply classified vector quantization (CVQ) [47] that uti-
lizes classified K-means for codebook learning, since we not
only consider the distribution of view pairs in the feature
space, but also attach importance to the distribution of the
view pairs in the angular space. While CVQ in [47] is
applied to encoding images, we employ it to encode the
view pairs of 3D shapes. In our approach, the discriminator
function is based on the eigen-angle division. First the
whole training set is divided into L subsets according to the
eigen-angle bins. Then, a standard K-means is used to con-
struct the visual vocabulary for each subset. In the phase of
coding, the features with eigen-angles belonging to different
bins are never assigned to the same visual word, since they
are encoded with different sub-codebooks.

Given a set of view pairs PðSÞ of a 3D shape S 2 S0,

where S0 is the shape database, we define the indicator
vector set as

IðSÞ ¼ fIi;jjIi;j ¼ Hðpi;jÞ; pi;j 2 PðSÞg: (15)

Then, the collection of the features

FðS0Þ ¼ ffi;jjfi;j 2 FðSÞ;S 2 S0g (16)

can be computed. Based on the division of the eigen-angle,
the l-thð1 � l � LÞ subset of F lðS0Þ is represented by

F lðS0Þ ¼ fi;jjfi;j 2 FðS0Þ; Ili;j ¼ 1
n o

: (17)

Standard K-means is applied to divide F lðS0Þ into M infor-

mative regions, and the codebook Cl ¼ fcl1; cl2; . . . ; clMg is

learned for F lðS0Þ. The final codebook is obtained as

C ¼
S L

l¼1Cl.

3.3.2 Coding

With the sub-codebook learned on each subset, we need to
encode the feature set FðSÞ to give a final vector representa-
tion for a shape S. Given a 3D shape S, the l-th subset of fea-
tures is given by

F lðSÞ ¼ fi;jjfi;j 2 FðSÞ; Ili;j ¼ 1
n o

: (18)

Let

zi;j ¼ T ðfi;jÞ ¼ z1i;j; z
2
i;j; . . . ; z

M
i;j

h i
2 RM (19)

be the encoded feature for fi;j, and zmi;j be the response value of
fi;j with respect to the m-th visual word in the sub-codebook

Cl. For each fi;j 2 F lðSÞ, VQ assigns it to the nearest visual

word in the corresponding codebook Cl so that zmi;j satisfies

zmi;j ¼
1; if qðfi;jÞ ¼ clm;
0; otherwise:

�
(20)

However, as analyzed in [48], vector quantization
offers a coarse estimation to the real distance between
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two features, i.e., zero if assigned to the same visual
word, and infinite otherwise. This may lead to severe
quantization errors, especially for features located at the
boundary of several visual words. In order to alleviate
the problem, we use a soft-assignment strategy [48] to
assign a descriptor to more than one visual words,
defined as

zmi;j ¼
expð�a � d̂ðfi;j; clmÞÞPM
k¼1 expð�a � d̂ðfi;j; clkÞÞ

; (21)

where

d̂ðfi;j; clmÞÞ ¼
dðfi;j; clmÞÞ; if clm 2 qkðfi;jÞ;
0; otherwise;

�
(22)

and a is the smoothing factor that controls the softness of
the assignment. The function qkð:Þ yields the set of visual
words containing the first k nearest neighbors of the input
feature.

The sum-pooling method defined as

W l ¼
X

fzi;jjzi;j ¼ T ðfi;jÞ; fi;j 2 F lðSÞg 2 RM (23)

is used to count the number of occurrences of correspond-
ing visual word.

The final representation of the 3D shape S is the concate-

nation of allW lð1 � l � LÞ, and it can be determined as

WðSÞ ¼ ½W1 W2 . . . WL� 2 RM�L; (24)

which is subsequently L2 normalized.
Let Q ¼ ½Q1;Q2; . . . ;QL� and D ¼ ½D1;D2; . . . ;DL� repre-

sent two 3D shapes, where Qi ¼ ½qi1; qi2; . . . ; qiM � denotes the
feature vector of ith eigen-angle bin of Q, and similarly

Di ¼ ½di1; di2; . . . ; diM �. We use the L2 distance between Q and
D computed as

d Q;Dð Þ ¼
XL
i

dðQi;DiÞ2 ¼
XL
i

XM
j

qij � dij




 


2 (25)

to measure the dissimilarity of the two shapes, where j:j2
denotes the L2 distance. The distance function d preserves
the spatial information of eigen-angle, for it only compares
the feature vectors belonging to the same eigen-angle bins,
which makes the function d more discriminative as demon-
strated by the experimental results presented in the next
section.

4 EXPERIMENTS

In this section, we evaluate the proposed dissimilarity
function on five 3D shape datasets and perform a com-
prehensive comparison to state-of-the-art algorithms. We
also study the influence of parameters on the retrieval
performance in Section 4.4.1. Comparisons with three
baseline methods are presented in Section 4.4.2. The
robustness against noise is discussed in Section 4.4.3.
The proposed TLC framework is extended to 3D feature
in Section 4.5. The average matching time is discussed in
Section 4.6.

4.1 Datasets and Evaluation Tools

The datasets used here are the Princeton Shape Bench-
mark test dataset (PSB) [28], the Engineering Shape
Benchmark (ESB) [49], the McGill dataset [23], the Water-
tight Models track of SHape REtrieval Contest 2007
dataset (WM-SHREC07) [43], and the SHape REtrieval
Contest 2014 Large Scale Comprehensive Track
Benchmark (SHREC14LSGTB) [50].

Among the five datasets, PSB dataset is the first widely-
used generic shape benchmark, and ESB dataset is more rel-
evant to the mechanical engineering domain for it consists
of 3D CAD models. Different from PSB dataset that only
contains rigid shapes, McGill dataset contains non-rigid
models. WM-SHREC07 and SHREC14LSGTB are two
shape datasets for competition held each year, and
SHREC14LSGTB is the latest and the biggest one, but shares
some common models with PSB, ESB and McGill.
SHREC14LSGTB is also the most challenging dataset so far,
in which the models exhibit more diversity than those in
any previous datasets. The details of these datasets, includ-
ing the total number of models #Model, the total number of
categories #Category, the average number of models per
category #Aver and the maximum number of models per
category#Max, are presented in Table 1.

To quantify the performance, we employ the following
evaluation tools:

� Nearest neighbor (NN). The percentage of the closest
matches that belongs to the same class as the query.

� First tier (FT) and second tier (ST). The recall for the
top ðk� 1Þ and 2ðk� 1Þ matches in the ranked list
respectively, where k is the number of shapes in the
category that query belongs to.

� Discounted cumulative gain (DCG). A statistic that
attaches more importance to the correct results near
the front of the ranked list than the correct results at
the end of the ranked list, under the assumption that
a user is less likely to consider elements near the end
of the list.

All the evaluation scores range from 0 to 100 percent, and a
higher score indicates a better performance. Refer to [28] for
more details about the definitions ofNN, FT, ST andDCG.

We also give Precision-Recall curves of different methods
to visualize the performance of two layer coding against
other methods. “Recall” (the horizontal axis) is defined as
the ratio of correct retrieved models to the total number of
models in the category, while “Precision” (the vertical axis)
is the ratio of correct retrieved models to the total number
of retrieved models. The more shifted up a P-R curve is, the
better of the retrieval performance for a given algorithm.

TABLE 1
The Details of the Five Datasets Used in This Paper

Dataset #Model #Category #Aver #Max

PSB 907 92 10 50
ESB 867 45 19 58
McGill 255 10 26 31
WM-SHREC07 400 20 20 20
SHREC14LSGTB 8,987 171 53 632
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4.2 Implementation Details

If not stated otherwise, we adopt the following setup for all
experiments.

Projection and feature extraction. After pose normalization,
each 3D shape S is projected into NV ¼ 64 views. Each view
is a depth image of size 200� 200. We extract about 200
SIFT descriptors around the interest points per view. We
use the the variant of RootSIFT [51] in all experiments.

Codebook learning. We randomly choose 1M SIFT features
to learn the codebook B ¼ fb1; b2; . . . ; bKg in the first layer
using the standard K-means. The codebook size K is set to
32. A randomly selected set of VALD features (500 K) is

used to construct the codebook Cl ¼ fcl1; cl2; . . . ; clMg ð1 � l �
LÞ in the second layer, with the bin number L set to 4, and
the codebook size M for each bin set to 500. Considering
that SHREC14LSGTB is an extremely large dataset, K is set
to 160, andM is set to 1,000 for this dataset.

Coding.We use VLAD in the first layer coding, and VQ in
the second layer coding. The number of visual words in
the soft-assignment strategy of VQ is set to 3, and the
smoothing factor a is set to 1.

Metric. Euclidean distance, also known as L2 metric, is
utilized to compute the distance between two shapes.

Additional technique. The speed of retrieval is crucial in
industrial applications. Considering the sparsity of our
learned representations for 3D shapes, inverted file, an index
data structure widely used in the document and image
retrieval, can be used to boost the retrieval speed significantly.

Experimental platform. Experiments are carried out on a
desktop machine with an Intel(R) Core(TM) i5-2320K CPU
(3.00 GHz) and 12 GB memory.

4.3 Comparative Evaluation

We compare the performance of the proposed method to
several state-of-the-art algorithms listed below:

� Covariance method [16]. A newly developed descrip-
tor using covariance matrices of features instead of
the features themselves. Two ways (one is matching
method and the other is an extension to BoW) are
used to compute the similarity between 3D models
based on the Riemannian metric.

� PANORAMA [7].Anovel 3D shape representation that
uses a set of panoramic views of the 3D model well
aligned via PCA technique. The views are described
with the combination of the 2D discrete Fourier
transform and the 2D discretewavelet transform.

� 2D/3D Hybrid [41]. A hybrid descriptor composed of
2D features based on depth buffers and 3D features
based on spherical harmonics. The feature compact-
ness is achieved via scalar feature quantization, and
further compressed by Huffman coding.

� Light field descriptor [31].Aclassical descriptor that uses
the orthogonal projections of the 3D object. These pro-
jections are encoded both by Zernike moments and
Fourier descriptors as features for later retrieval.

� DESIRE [32]. A composite 3D shape feature vector
which is combined of depth buffer images, silhou-
ettes, and ray-extents of a polygonal mesh.

� SH-GEDT [52]. A rotation invariant representation of
the Gaussian Euclidean distance transformdescriptor.

As shown in Table 2, it is evident that TLC exhibits
encouraging discriminative power in shape matching, and
outperforms other methods significantly. Our TLC consis-
tently achieves state-of-the-art performance for all four eval-
uation metrics (NN, FT, ST and DCG) in PSB dataset,
ESB dataset, McGill dataset, and WM-SHREC07 dataset.

TABLE 2
The Performance of Different Algorithms on

Five Standard Datasets
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Another phenomenon is that the results achieved by I-Pair
are overall sightly better than J-Pair. This is reasonable, as
the encoding procedure of J-Pair puts the local descriptors
from two views into a same visual word, but I-Pair never.

For the comparison on SHREC14LSGTB dataset, we col-
lected the leading results in the Shrec competition 2014
from the survey paper [50]. As shown in Table 2(e), our
method also achieves the best performance. Notice that the
competitive methods including BF-DSIFT, KVLAD and
DBSVC are coding-based methods, as is TLC. The dimen-
sion of the final features obtained by KVLAD, DBSVC is 32
k and 270 k respectively. Such high dimensional features
are not a proper choice for large scale 3D shape retrieval,
due to large memory consumption and low retrieval effi-
ciency. By contrast, our features are much more compact
with advanced discriminatory power, which is more suit-
able for 3D shape retrieval in large scale dataset. The
numerical comparison of average matching time will be
presented in Section 4.6.

It has been proven that utilizing contextual information
in the data manifold through some learning methods, such
as local relevance feedback (LRF) [7], diffusion process [57],
[58], etc., can improve the retrieval performance. However,
our method, without considering the data manifold, even
surpasses PANORAMA with LRF markedly, which con-
firms its superior discriminative ability. It is expected that
TLC can achieve a better performance if contextual informa-
tion is taken into consideration.

In addition, we also plot the precision-recall curves
for the five datasets to visualize the performance of dif-
ferent algorithms in Fig. 6. Consistent with the previous
analysis, our algorithm also performs best among these
algorithms.

4.4 Discussion

4.4.1 To What Extent Does TLC Improve the Baseline

In order to show the superiority of two layer coding, we
implement three baseline methods which focus on different

aspects of TLC. The default settings described in Section 4.2
are used for the implementation of TLC.

1) One layer coding. Encoding the visual local features
from all views in just one layer is a straightforward
way, which has been proven feasible in [36]. How-
ever, it ignores the spatial arrangement of different
views, and considers all the features extracted from
different views equally. We set the codebook size as
32 in order to keep the same dimension of output
features with TLC for fair comparison.

2) Single view coding. To demonstrate that view pair
representation is more stable and discriminative
than representation using single view, we directly
encode all the VLAD features of individual views
into a histogram using vector quantization. The
codebook size is set to 2,000 to keep the final feature
of the same length with TLC.

3) TLC without angular division. This baseline method
is used to prove the effect of angular division pro-
posed in TLC. In this setting, angular division is
not performed in the second layer coding, and all
the view pairs are directly encoded by vector
quantization. Two results of the baseline method
are reported, associated with I-Pair and J-Pair
respectively.

The comparison is conducted on PSB dataset and WM-
SHREC07 competition dataset, and the results are pre-
sented in Table 3. It can be easily seen that TLC, with
either J-Pair or I-Pair, performs much better than direct
one layer coding for all four metrics, which confirms that
the way we use the spatial information can generate
much more discriminative and robust features for shape
matching. The inferior performance of single view coding
indicates that it is very beneficial to utilize the stable
representation of view pairs. The performance of TLC
without angular division is also presented. As it suggests,
exploiting the spatial arrangement of views can improve
the performance further.

Fig. 6. The Precision-Recall curves of TLC and other comparative approaches on five datasets.
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4.4.2 Parameter Analysis

In the section, we discuss the impact of the parameters on
the retrieval performance. The most important parameters
in our method are the size K of codebook learned for the
SIFT features in the first layer coding, and the size M of
sub-codebooks learned for the feature pairs (J-Pair or I-Pair)
in the second layer coding.

It has been proven experimentally in image retrieval and
classification that the performance improves with the code-
book size increasing, but gets saturated when the codebook
size reaches a critical point. The phenomenon is also known
as the so-called overfitting effect, which results in the pla-
teau of performance curves.

The performance of TLC with J-Pair using codebooks of
different sizes in PSB dataset is reported in Fig. 7. We first

fix the size of sub-codebook in the second layer to 500, and
plot the performance under different sizes of codebook
used in the first layer in Fig. 7a. There is no increase in
retrieval performance when the codebook size arrives at 64.
We also evaluate the influence of the sub-codebook size
used in the second layer coding in Fig. 7b, when the code-
book size in the first layer is constantly set to 32. It can be
found that the saturation point of the sub-codebook size in
the second layer is 750.

4.4.3 Robustness against Noise of View Sampling

In real cases, the view points are not necessarily located
evenly around the 3D model. In order to evaluate the
robustness of TLC against view point changes, we add a
random noise during view sampling procedure. The noise
follows a Gaussian distribution with zero mean and stan-
dard deviation s.

Fig. 8 depicts the retrieval performances of TLC with I-
Pair with regard to the noise ratio s. As Shown in Fig. 8,
TLC is stable to view point changes, and adding extra
noise does not impair the retrieval performances too
much. It also demonstrates that view pair provides much
more stable representation than the individual view for
coding approaches.

4.5 Extension to 3D Feature

Though the proposed method is based on 2D projections,
TLC can be easily extended to encode 3D shape features on
surface, since feature sampling and coding strategies with
view pair are general. We encode 3D features with TLC as
follows: 1) extract the 3D features on the vertices of 3D mod-
els; 2) For a certain view (determined by uel and uaz), the 3D

TABLE 3
The Comparison with Baseline Methods

PSB dataset WM-SHREC07 competition

Method NN FT ST DCG NN FT ST DCG

One layer Coding 0.735 0.508 0.638 0.749 0.935 0.692 0.822 0.900
Single view coding 0.703 0.468 0.586 0.714 0.962 0.691 0.773 0.893
TLC+J-Pair (No angular division) 0.770 0.549 0.691 0.771 0.975 0.740 0.844 0.918
TLC+I-Pair (No angular division) 0.763 0.546 0.688 0.767 0.967 0.790 0.887 0.937

TLC+J-Pair 0.776 0.555 0.700 0.775 0.993 0.815 0.917 0.952
TLC+I-Pair 0.763 0.562 0.705 0.773 0.988 0.831 0.935 0.957

Fig. 7. The influence of the codebook size in each layer. (a) The influ-
ence of the codebook size in the first layer for the four evaluation met-
rics. The size of each sub-codebook in the second layer is set to 500.
(b) The influence of codebook size in the second layer for the four evalu-
ation metrics. The size of codebook in the first layer is set to 32.

Fig. 8. The retrieval performance of TLC on PSB dataset is reported
when adding Gaussian noise with standard deviation s increasing from
0 to 1 during view sampling procedure.
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feature of the visible vertices are collected and encoded
using vector quantization like Shape Google [17] into a his-
togram to represent that view. With the above simple opera-
tions, the proposed TLC can be applied to encode 3D
features.

To demonstrate the effectiveness of TLC for 3D fea-
tures, we compare it to two recent popular model-based
approaches, eg., Shape Google [17] and Intrinsic Spatial
Pyramid Matching [59], which are designed for encoding
3D shape signatures, and are a good fit for non-rigid
shapes. For fair comparison, we adopt heat kernel signa-
ture (HKS) [26] as the input feature for TLC, consistent to
[17], [59]. Notice that though HKS and scale-invariant
heat kernel signature (SIHKS) [27] are popular descrip-
tors, they require 3D models containing manifold struc-
ture as input, which is not fulfilled in the five datasets we
used. As a result, we use SHREC 2011 non-rigid data-
set [60] following Intrinsic Spatial Pyramid Matching [59]
for the comparison. Consistent with the parameter setting
of HKS in [59], the first 150 eigenvalues and eigenvectors
are used; the diffusion time is formulated as t ¼ t0a

t

where t0 and a are set to 0.01 and 4 respectively; t ranges
from 0 to 5 with a step size 0.25; the codebook size for
HKS is set to 32.

In Table 4, we compare the performance of HKS-based
TLC with Shape Google [17] and Intrinsic Spatial Pyramid
Matching [59]. We can observe that TLC is also suitable for
3D features, and it outperforms the ISPM by 0.17, and
ShapeGoogle by 0.26 in DCG. The single view coding with
HKS as a baseline is also reported in Table 4, which per-
forms much worse than TLC. This again demonstrates that
view pair representation is more stable than single view.
We also reported the results of TLC that deals with SIFT on
the 2D projections, and they yield the best performance in
Table 4.

Note that TLC is designed for generic 3D shape
retrieval, and it seems not proper for non-rigid deforma-
tion. However, as demonstrated by the competitive
results on McGill dataset and SHREC 2011 non-rigid
dataset, TLC is also robust to such pose variation for
two reasons. First, the SIFT descriptor with interest point
detectors is invariant to pose variations. The Harris
detector can more or less capture the local parts of a
non-rigid object even though its pose changes. Second,
TLC is partly robust to pose variations due to the inborn
characteristic of histogram feature. Vector quantization,
especially the soft assignment version, can tolerate some
minor changes of the encoded information from the
view pairs.

4.6 The Average Matching Time

As the proposed method is mainly designed for 3D shape
retrieval in large scale, we show the time cost of TLC and
compare it with several efficient methods on PSB dataset in
Table 5. The average pairwise matching time is defined as
the time of retrieving the whole database dividing by the
maximum possible comparison number. Many existing
view-based matching methods are mainly designed for
establishing the accurate correspondence of multiple
views. In contrast, TLC generates a single vector repre-
sentation for a 3D shape, which is a sparse vector with
many zero elements. Consequently, inverted file [61] can
de adopted to significantly speed up the matching pro-
cess. As shown in Table 5, TLC only takes microseconds
to finish a retrieval task for one query. On the largest
SHREC14LSGTB dataset, the average matching time of
TLC is about 2:10ms, while the time decreases to 0:22ms if
inverted file is utilized. Moreover, it can be expected that
the speed of retrieval can be further boosted with the
usage of more advanced indexing techniques, such as
product quantization [62], KD-tree [63].

5 CONCLUSION

In this paper, we propose a two layer coding framework for
effectively retrieving 3D shapes with high time efficiency.
The proposed method does not need PCA for orientation
alignment due to its rotation-invariant property. For the first
layer, two representations of view pairs are proposed to
encode the local features around the interest points in the
depth views. For the second layer, view-pair representa-
tions can be considered as a set of local features collected
from a given 3D shape, which are encoded into a final fea-
ture vector for shape comparison. The angular division of
view pairs facilitates the second layer coding that preserves
the relative spatial relationship between views.

Instead of establishing the view correspondence explic-
itly, the final signatures of TLC are merely sparse vectors
that can be directly used for shape matching using L2 dis-
tance, and the sparsity property is a particularly good fit for
large scale 3D shape retrieval with inverted file. Our
method not only has advantage in the time efficiency, but
also consistently achieves state-of-the-arts retrieval perfor-
mance on several standard datasets. In addition, our frame-
work is not limited to encoding features from 2D
projections, but also works well on encoding 3D surface
descriptors.

In the future, we will study the feature fusion of comple-
mentary descriptors and more advanced coding meth-
ods [36], [64] in our two layer coding framework. Also,
more delicate methods can be explored for modeling the
spatial relation between views.

TABLE 4
The Comparison on SHREC 2011 Non-Rigid Dataset

Method NN FT ST DCG

Shape Google [17] 0.982 0.637 0.732 0.881
ISPM [59] - - - 0.890
Single view coding 0.987 0.652 0.719 0.881
TLC+J-Pair (HKS) 0.985 0.703 0.797 0.907
TLC+I-Pair (HKS) 0.983 0.694 0.791 0.901

TLC+J-Pair (SIFT) 0.982 0.864 0.941 0.964
TLC+I-Pair (SIFT) 0.990 0.865 0.933 0.963

TABLE 5
The Average Pairwise Matching Time of Different

Algorithms on PSB Dataset

Algorithms Time(us) Algorithms Time(us)

LFD 1,300 2D/3D Hybrid 170
Panoramic Views 230 TLC 1.09
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